Suppr超能文献

一种激酶和糖苷酶在过氧化物酶体中代谢假尿嘧啶,以防止有毒的假尿嘧啶单磷酸积累。

A Kinase and a Glycosylase Catabolize Pseudouridine in the Peroxisome to Prevent Toxic Pseudouridine Monophosphate Accumulation.

机构信息

College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China

Department of Molecular Nutrition and Biochemistry of Plants, Institute of Plant Nutrition, Leibniz University Hannover, Hannover 30419, Germany.

出版信息

Plant Cell. 2020 Mar;32(3):722-739. doi: 10.1105/tpc.19.00639. Epub 2020 Jan 6.

Abstract

Pseudouridine (Ψ) is a frequent nucleoside modification that occurs in both noncoding RNAs and mRNAs. In pseudouridine, C5 of uracil is attached to the Rib via an unusual C-glycosidic bond. This RNA modification is introduced on the RNA by site-specific transglycosylation of uridine (U), a process mediated by pseudouridine synthases. RNA is subject to constant turnover, releasing free pseudouridine, but the metabolic fate of pseudouridine in eukaryotes is unclear. Here, we show that in Arabidopsis (), pseudouridine is catabolized in the peroxisome by (1) a pseudouridine kinase (PUKI) from the PfkB family that generates 5'-pseudouridine monophosphate (5'-ΨMP) and (2) a ΨMP glycosylase (PUMY) that hydrolyzes ΨMP to uracil and ribose-5-phosphate. Compromising pseudouridine catabolism leads to strong pseudouridine accumulation and increased ΨMP content. ΨMP is toxic, causing delayed germination and growth inhibition, but compromising pseudouridine catabolism does not affect the Ψ/U ratios in RNA. The bipartite peroxisomal PUKI and PUMY are conserved in plants and algae, whereas some fungi and most animals (except mammals) possess a PUMY-PUKI fusion protein, likely in mitochondria. We propose that vacuolar turnover of ribosomal RNA produces most of the pseudouridine pool via 3'-ΨMP, which is imported through the cytosol into the peroxisomes for degradation by PUKI and PUMY, a process involving a toxic 5'-ΨMP intermediate.

摘要

假尿嘧啶核苷 (Ψ) 是一种常见的核碱基修饰,存在于非编码 RNA 和 mRNA 中。在假尿嘧啶核苷中,尿嘧啶的 C5 通过一种不寻常的 C-糖苷键与核糖连接。这种 RNA 修饰是由尿嘧啶 (U) 的特异性转糖苷作用引入 RNA 的,该过程由假尿嘧啶合成酶介导。RNA 处于不断的周转中,释放出游离的假尿嘧啶,但真核生物中假尿嘧啶的代谢命运尚不清楚。在这里,我们表明在拟南芥 (Arabidopsis) 中,假尿嘧啶在过氧化物酶体中通过 (1) PfkB 家族的假尿嘧啶激酶 (PUKI) 代谢,该酶生成 5'-假尿嘧啶单磷酸 (5'-ΨMP) 和 (2) ΨMP 糖苷酶 (PUMY) 水解 ΨMP 生成尿嘧啶和核糖-5-磷酸。假尿嘧啶代谢的破坏导致强烈的假尿嘧啶积累和 ΨMP 含量增加。ΨMP 是有毒的,导致发芽延迟和生长抑制,但破坏假尿嘧啶代谢不会影响 RNA 中的 Ψ/U 比例。二肽过氧化物酶体 PUKI 和 PUMY 在植物和藻类中保守,而一些真菌和大多数动物(除哺乳动物外)具有 PUMY-PUKI 融合蛋白,可能存在于线粒体中。我们提出,核糖体 RNA 的液泡周转通过 3'-ΨMP 产生大部分假尿嘧啶库,该 3'-ΨMP 通过细胞质导入过氧化物酶体,然后由 PUKI 和 PUMY 降解,该过程涉及有毒的 5'-ΨMP 中间产物。

相似文献

2
Structure and function of the pseudouridine 5'-monophosphate glycosylase PUMY from .
RNA Biol. 2024 Jan;21(1):1-10. doi: 10.1080/15476286.2023.2293340. Epub 2023 Dec 20.
3
Structure Characterization of Pseudouridine Kinase PsuK.
Front Microbiol. 2022 Jun 17;13:926099. doi: 10.3389/fmicb.2022.926099. eCollection 2022.
4
Pseudouridine monophosphate glycosidase: a new glycosidase mechanism.
Biochemistry. 2012 Nov 13;51(45):9245-55. doi: 10.1021/bi3006829. Epub 2012 Oct 30.
6
Systematic Engineering of for Efficient Production of Pseudouridine from Glucose and Uracil.
ACS Synth Biol. 2024 Apr 19;13(4):1303-1311. doi: 10.1021/acssynbio.4c00028. Epub 2024 Mar 26.
9
Transcriptome-wide analysis of pseudouridylation of mRNA and non-coding RNAs in Arabidopsis.
J Exp Bot. 2019 Oct 15;70(19):5089-5600. doi: 10.1093/jxb/erz273.
10
Pseudouridine: still mysterious, but never a fake (uridine)!
RNA Biol. 2014;11(12):1540-54. doi: 10.4161/15476286.2014.992278.

引用本文的文献

1
pseudouridine glycosidase is important for growth in hygromycin stress and for filamentation.
MicroPubl Biol. 2025 Aug 21;2025. doi: 10.17912/micropub.biology.001713. eCollection 2025.
2
Metabolism of epigenetic ribonucleosides leads to nucleolar stress and cytotoxicity.
bioRxiv. 2025 Jun 13:2025.06.11.659152. doi: 10.1101/2025.06.11.659152.
3
Structural and functional insights into the substrate specificity of the pseudouridine monophosphate phosphatase HDHD1A.
J Biol Chem. 2025 Jun;301(6):110257. doi: 10.1016/j.jbc.2025.110257. Epub 2025 May 21.
6
Epigenetics in the modern era of crop improvements.
Sci China Life Sci. 2025 Jan 8. doi: 10.1007/s11427-024-2784-3.
7
Endogenous γ-Aminobutyric Acid Accumulation Enhances Salinity Tolerance in Rice.
Plants (Basel). 2024 Sep 30;13(19):2750. doi: 10.3390/plants13192750.
10
Genome-wide identification and functional analysis of mRNA mA writers in soybean under abiotic stress.
Front Plant Sci. 2024 Jul 11;15:1446591. doi: 10.3389/fpls.2024.1446591. eCollection 2024.

本文引用的文献

1
Transcriptome-wide analysis of pseudouridylation of mRNA and non-coding RNAs in Arabidopsis.
J Exp Bot. 2019 Oct 15;70(19):5089-5600. doi: 10.1093/jxb/erz273.
2
Pyrimidine Salvage: Physiological Functions and Interaction with Chloroplast Biogenesis.
Plant Physiol. 2019 Aug;180(4):1816-1828. doi: 10.1104/pp.19.00329. Epub 2019 May 17.
3
AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex.
Plant Cell. 2019 Mar;31(3):734-751. doi: 10.1105/tpc.18.00899. Epub 2019 Feb 20.
4
Plant peroxisomal solute transporter proteins.
J Integr Plant Biol. 2019 Jul;61(7):817-835. doi: 10.1111/jipb.12790. Epub 2019 Apr 16.
5
RNA modifications modulate gene expression during development.
Science. 2018 Sep 28;361(6409):1346-1349. doi: 10.1126/science.aau1646.
7
An mA-YTH Module Controls Developmental Timing and Morphogenesis in Arabidopsis.
Plant Cell. 2018 May;30(5):952-967. doi: 10.1105/tpc.17.00833. Epub 2018 Apr 11.
9
Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
Mol Cell. 2017 Dec 7;68(5):978-992.e4. doi: 10.1016/j.molcel.2017.11.002. Epub 2017 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验