Suppr超能文献

电场对等离子体增强原子层沉积二氧化硅薄膜沉积的影响:实验与计算研究。

Effect of an electric field during the deposition of silicon dioxide thin films by plasma enhanced atomic layer deposition: an experimental and computational study.

机构信息

Institute of Applied Physics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany.

出版信息

Nanoscale. 2020 Jan 23;12(3):2089-2102. doi: 10.1039/c9nr07202k.

Abstract

The growth, chemical, structural, mechanical, and optical properties of oxide thin films deposited by plasma enhanced atomic layer deposition (PEALD) are strongly influenced by the average-bias voltage applied during the reaction step of surface functional groups with oxygen plasma species. Here, this effect is investigated thoroughly for SiO2 deposited in two different PEALD tools at average-bias voltages up to -300 V. Already at a very low average-bias voltage (< -10 V), the SiO2 films have significantly lower water content than films grown without biasing together with the formation of denser films having a higher refractive index and nearly stoichiometric composition. Substrate biasing during PEALD also enables control of mechanical stress. The experimental findings are supported by density functional theory and atomistic simulations. They demonstrate that the application of an electric field during the plasma step results in an increased energy transfer between energetic ions and the surface, directly influencing relevant surface reactions. Applying an electric field during the PEALD process leads to SiO2 thin films with significantly improved properties comparable to films grown by ion beam sputtering.

摘要

在等离子体增强原子层沉积(PEALD)过程中,施加的平均偏置电压会强烈影响氧化物薄膜的生长、化学、结构、机械和光学性能,这是由于在表面官能团与氧等离子体反应步骤中发生的影响。在这里,我们在平均偏置电压高达-300 V 的两种不同的 PEALD 工具中深入研究了这种影响对 SiO2 的沉积效果。即使在非常低的平均偏置电压(< -10 V)下,与没有偏置的情况下相比,SiO2 薄膜的含水量要低得多,同时形成了密度更高、折射率更高且接近化学计量比的薄膜。在 PEALD 过程中对基底进行偏置也可以控制机械应力。实验结果得到了密度泛函理论和原子模拟的支持。它们表明,在等离子体步骤中施加电场会导致高能离子与表面之间的能量传递增加,这直接影响相关的表面反应。在 PEALD 过程中施加电场会导致 SiO2 薄膜的性能得到显著改善,可与离子束溅射生长的薄膜相媲美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验