Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States.
Department of Chemistry , Stanford University , Stanford , California 94305 , United States.
J Am Chem Soc. 2020 Feb 12;142(6):3104-3116. doi: 10.1021/jacs.9b12571. Epub 2020 Jan 28.
Establishing redox and thermodynamic relationships between metal-ion-bound O and its reduced (and protonated) derivatives is critically important for a full understanding of (bio)chemical processes involving dioxygen processing. Here, a ferric heme peroxide complex, [(F)Fe-(O)] () (F = tetrakis(2,6-difluorophenyl)porphyrinate), and a superoxide complex, [(F)Fe-(O)] (), are shown to be redox interconvertible. Using Cr(η-CH), an equilibrium state where and are present is established in tetrahydrofuran (THF) at -80 °C, allowing determination of the reduction potential of as -1.17 V vs Fc. could be protonated with 2,6-lutidinium triflate, yielding the low-spin ferric hydroperoxide species, [(F)Fe-(OOH)] (). Partial conversion of back to using a derivatized phosphazene base gave a / equilibrium mixture, leading to the determination of p = 28.8 for (THF, -80 °C). With the measured reduction potential and p, the O-H bond dissociation free energy (BDFE) of hydroperoxide species was calculated to be 73.5 kcal/mol, employing the thermodynamic square scheme and Bordwell relationship. This calculated O-H BDFE of , in fact, lines up with an experimental demonstration of the oxidizing ability of via hydrogen atom transfer (HAT) from TEMPO-H (2,2,6,6-tetramethylpiperdine--hydroxide, BDFE = 66.5 kcal/mol in THF), forming the hydroperoxide species and TEMPO radical. Kinetic studies carried out with TEMPO-H(D) reveal second-order behavior, = 0.5, = 0.08 M s (THF, -80 °C); thus, the hydrogen/deuterium kinetic isotope effect (KIE) = 6, consistent with H-atom abstraction by being the rate-determining step. This appears to be the first case where experimentally derived thermodynamics lead to a ferric heme hydroperoxide OO-H BDFE determination, that Fe-OOH species being formed via HAT reactivity of the partner ferric heme superoxide complex.
建立金属离子结合的 O 与其还原(和质子化)衍生物之间的氧化还原和热力学关系对于全面理解涉及氧气处理的(生物)化学过程至关重要。在这里,展示了一种铁卟啉过氧化物配合物 [(F)Fe-(O)] ()(F = 四(2,6-二氟苯基)卟啉)和超氧化物配合物 [(F)Fe-(O)] () 是可氧化还原相互转化的。使用 Cr(η-CH),在 -80°C 的四氢呋喃 (THF) 中建立了 和 同时存在的平衡态,允许确定 作为 -1.17 V 对 Fc 的还原电位。 可以用 2,6- 六氢吡啶三氟甲磺酸酯质子化,生成低自旋的铁过氢氧化物物种 [(F)Fe-(OOH)] ()。使用衍生化的磷杂环戊二烯基碱将部分 转化回 ,得到 / 平衡混合物,从而确定了 的 p = 28.8(THF,-80°C)。利用测量的还原电位和 p,根据热力学正方形方案和 Bordwell 关系计算过氧物种 的 O-H 键离解自由能 (BDFE) 为 73.5 kcal/mol。实际上, 的计算 O-H BDFE 与通过 TEMPO-H(2,2,6,6-四甲基哌啶-1-氧化物,BDFE = 66.5 kcal/mol 在 THF 中)的氢原子转移 (HAT) 氧化能力的实验证明一致,形成过氧物种 和 TEMPO 自由基。使用 TEMPO-H(D) 进行的动力学研究表明为二级行为, = 0.5, = 0.08 M s(THF,-80°C);因此,氢/氘动力学同位素效应(KIE)= 6,这与由 进行的 H 原子攫取是速率决定步骤一致。这似乎是第一个通过实验得出的热力学数据导致铁卟啉过氧化物 OO-H BDFE 确定的情况,Fe-OOH 物种是通过铁卟啉超氧化物配合物的 HAT 反应形成的。