Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA.
Institute for Theoretical Physics, ETH Zurich 8093, Switzerland.
Phys Rev Lett. 2019 Dec 20;123(25):250601. doi: 10.1103/PhysRevLett.123.250601.
The resource theory of thermal operations, an established model for small-scale thermodynamics, provides an extension of equilibrium thermodynamics to nonequilibrium situations. On a lattice of any dimension with any translation-invariant local Hamiltonian, we identify a large set of translation-invariant states that can be reversibly converted to and from the thermal state with thermal operations and a small amount of coherence. These are the spatially ergodic states, i.e., states that have sharp statistics for any translation-invariant observable, and mixtures of such states with the same thermodynamic potential. As an intermediate result, we show for a general state that if the gap between the min- and the max-relative entropies to the thermal state is small, then the state can be approximately reversibly converted to and from the thermal state with thermal operations and a small source of coherence. Our proof provides a quantum version of the Shannon-McMillan-Breiman theorem for the relative entropy and a quantum Stein's lemma for ergodic states and local Gibbs states. Our results provide a strong link between the abstract resource theory of thermodynamics and more realistic physical systems as we achieve a robust and operational characterization of the emergence of a thermodynamic potential in translation-invariant lattice systems.
热操作的资源理论是小尺度热力学的一个成熟模型,它将平衡热力学扩展到非平衡情况。在任何维度的晶格上,对于任何平移不变的局部哈密顿量,我们确定了一组很大的平移不变态,可以通过热操作和少量的相干性可逆地转换为热态。这些是空间遍历态,即对于任何平移不变可观测量都具有尖锐统计的态,以及这些态与相同热力学势的混合物。作为中间结果,我们对于一般态证明,如果最小和最大相对熵到热态的间隙很小,那么该态可以通过热操作和小的相干源近似可逆地转换为和来自热态。我们的证明为相对熵的 Shannon-McMillan-Breiman 定理和遍历态和局部 Gibbs 态的量子 Stein 引理提供了量子版本。我们的结果在热力学的抽象资源理论和更现实的物理系统之间建立了强有力的联系,因为我们在平移不变晶格系统中实现了热力学势出现的稳健和可操作的描述。