Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
Department of Neurobiology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA.
Pharmacol Ther. 2020 Apr;208:107474. doi: 10.1016/j.pharmthera.2020.107474. Epub 2020 Jan 9.
Antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel alter body temperature (T) in laboratory animals and humans: most cause hyperthermia; some produce hypothermia; and yet others have no effect. TRPV1 can be activated by capsaicin (CAP), protons (low pH), and heat. First-generation (polymodal) TRPV1 antagonists potently block all three TRPV1 activation modes. Second-generation (mode-selective) TRPV1 antagonists potently block channel activation by CAP, but exert different effects (e.g., potentiation, no effect, or low-potency inhibition) in the proton mode, heat mode, or both. Based on our earlier studies in rats, only one mode of TRPV1 activation - by protons - is involved in thermoregulatory responses to TRPV1 antagonists. In rats, compounds that potently block, potentiate, or have no effect on proton activation cause hyperthermia, hypothermia, or no effect on T, respectively. A T response occurs when a TRPV1 antagonist blocks (in case of hyperthermia) or potentiates (hypothermia) the tonic TRPV1 activation by protons somewhere in the trunk, perhaps in muscles, and - via the acido-antithermogenic and acido-antivasoconstrictor reflexes - modulates thermogenesis and skin vasoconstriction. In this work, we used a mathematical model to analyze T data from human clinical trials of TRPV1 antagonists. The analysis suggests that, in humans, the hyperthermic effect depends on the antagonist's potency to block TRPV1 activation not only by protons, but also by heat, while the CAP activation mode is uninvolved. Whereas in rats TRPV1 drives thermoeffectors by mediating pH signals from the trunk, but not T signals, our analysis suggests that TRPV1 mediates both pH and thermal signals driving thermoregulation in humans. Hence, in humans (but not in rats), TRPV1 is likely to serve as a thermosensor of the thermoregulation system. We also conducted a meta-analysis of T data from human trials and found that polymodal TRPV1 antagonists (ABT-102, AZD1386, and V116517) increase T, whereas the mode-selective blocker NEO6860 does not. Several strategies of harnessing the thermoregulatory effects of TRPV1 antagonists in humans are discussed.
瞬时受体电位香草酸亚型 1(TRPV1)通道拮抗剂会改变实验动物和人类的体温(T):大多数会导致体温升高;有些会导致体温降低;还有一些则没有影响。TRPV1 可被辣椒素(CAP)、质子(低 pH 值)和热激活。第一代(多模态)TRPV1 拮抗剂能强烈阻断所有三种 TRPV1 激活模式。第二代(模式选择性)TRPV1 拮抗剂能强烈阻断 CAP 对通道的激活,但在质子模式、热模式或两者中,对通道激活产生不同的影响(例如,增强、无影响或低强度抑制)。基于我们之前在大鼠中的研究,只有 TRPV1 激活的一种模式——由质子介导——参与了 TRPV1 拮抗剂的体温调节反应。在大鼠中,强烈阻断、增强或对质子激活无影响的化合物分别导致体温升高、体温降低或对 T 无影响。当 TRPV1 拮抗剂在躯干的某个部位(可能在肌肉中)阻断(在体温升高的情况下)或增强(体温降低的情况下)质子对 TRPV1 的持续激活时,就会发生 T 反应,并且通过酸抗热和酸抗血管收缩反射来调节产热和皮肤血管收缩。在这项工作中,我们使用数学模型分析了 TRPV1 拮抗剂的人类临床试验的 T 数据。分析表明,在人类中,发热效应取决于拮抗剂阻断 TRPV1 不仅由质子,而且由热激活的能力,而 CAP 激活模式则不参与。在大鼠中,TRPV1 通过介导来自躯干的 pH 信号来驱动热敏效应器,但不介导 T 信号,我们的分析表明,TRPV1 介导了驱动人类体温调节的 pH 和热信号。因此,在人类(但不是大鼠)中,TRPV1 可能作为体温调节系统的温度传感器。我们还对来自人类试验的 T 数据进行了荟萃分析,发现多模态 TRPV1 拮抗剂(ABT-102、AZD1386 和 V116517)升高 T,而模式选择性阻滞剂 NEO6860 则没有。讨论了几种利用 TRPV1 拮抗剂在人类中的体温调节作用的策略。