Suppr超能文献

药物反应预测的计算方法的调查和系统评估。

A survey and systematic assessment of computational methods for drug response prediction.

出版信息

Brief Bioinform. 2021 Jan 18;22(1):232-246. doi: 10.1093/bib/bbz164.

Abstract

Drug response prediction arises from both basic and clinical research of personalized therapy, as well as drug discovery for cancers. With gene expression profiles and other omics data being available for over 1000 cancer cell lines and tissues, different machine learning approaches have been applied to drug response prediction. These methods appear in a body of literature and have been evaluated on different datasets with only one or two accuracy metrics. We systematically assess 17 representative methods for drug response prediction, which have been developed in the past 5 years, on four large public datasets in nine metrics. This study provides insights and lessons for future research into drug response prediction.

摘要

药物反应预测源于个性化治疗的基础和临床研究,以及癌症的药物发现。随着基因表达谱和其他组学数据可用于超过 1000 种癌细胞系和组织,不同的机器学习方法已被应用于药物反应预测。这些方法出现在文献中,并在不同的数据集上使用只有一两个准确性指标进行了评估。我们系统地评估了过去 5 年内开发的 17 种用于药物反应预测的代表性方法,使用 9 个指标在四个大型公共数据集上进行评估。这项研究为药物反应预测的未来研究提供了一些见解和经验教训。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验