Suppr超能文献

基于成像数据的直肠癌生存分析的深度卷积神经网络

DEEP CONVOLUTIONAL NEURAL NETWORKS FOR IMAGING DATA BASED SURVIVAL ANALYSIS OF RECTAL CANCER.

作者信息

Li Hongming, Boimel Pamela, Janopaul-Naylor James, Zhong Haoyu, Xiao Ying, Ben-Josef Edgar, Fan Yong

机构信息

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:846-849. doi: 10.1109/ISBI.2019.8759301. Epub 2019 Jul 11.

Abstract

Recent radiomic studies have witnessed promising performance of deep learning techniques in learning radiomic features and fusing multimodal imaging data. Most existing deep learning based radiomic studies build predictive models in a setting of pattern classification, not appropriate for survival analysis studies where some data samples have incomplete observations. To improve existing survival analysis techniques whose performance is hinged on imaging features, we propose a deep learning method to build survival regression models by optimizing imaging features with deep convolutional neural networks (CNNs) in a proportional hazards model. To make the CNNs applicable to tumors with varied sizes, a spatial pyramid pooling strategy is adopted. Our method has been validated based on a simulated imaging dataset and a FDG-PET/CT dataset of rectal cancer patients treated for locally advanced rectal cancer. Compared with survival prediction models built upon hand-crafted radiomic features using Cox proportional hazards model and random survival forests, our method achieved competitive prediction performance.

摘要

最近的放射组学研究表明,深度学习技术在学习放射组学特征和融合多模态成像数据方面表现出了良好的前景。大多数现有的基于深度学习的放射组学研究都是在模式分类的背景下构建预测模型的,这不适用于一些数据样本观测不完整的生存分析研究。为了改进现有性能依赖于成像特征的生存分析技术,我们提出了一种深度学习方法,通过在比例风险模型中使用深度卷积神经网络(CNN)优化成像特征来构建生存回归模型。为了使CNN适用于不同大小的肿瘤,我们采用了空间金字塔池化策略。我们的方法已基于模拟成像数据集和局部晚期直肠癌患者的FDG-PET/CT数据集得到验证。与使用Cox比例风险模型和随机生存森林基于手工制作的放射组学特征构建的生存预测模型相比,我们的方法取得了具有竞争力的预测性能。

相似文献

1
DEEP CONVOLUTIONAL NEURAL NETWORKS FOR IMAGING DATA BASED SURVIVAL ANALYSIS OF RECTAL CANCER.
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:846-849. doi: 10.1109/ISBI.2019.8759301. Epub 2019 Jul 11.
2
Testing the Ability of Convolutional Neural Networks to Learn Radiomic Features.
Comput Methods Programs Biomed. 2022 Jun;219:106750. doi: 10.1016/j.cmpb.2022.106750. Epub 2022 Mar 17.
3
Survival outcome prediction in cervical cancer: Cox models vs deep-learning model.
Am J Obstet Gynecol. 2019 Apr;220(4):381.e1-381.e14. doi: 10.1016/j.ajog.2018.12.030. Epub 2018 Dec 21.
7
Pattern Classification for Gastrointestinal Stromal Tumors by Integration of Radiomics and Deep Convolutional Features.
IEEE J Biomed Health Inform. 2019 May;23(3):1181-1191. doi: 10.1109/JBHI.2018.2841992. Epub 2018 May 29.
9
Training Lightweight Deep Convolutional Neural Networks Using Bag-of-Features Pooling.
IEEE Trans Neural Netw Learn Syst. 2019 Jun;30(6):1705-1715. doi: 10.1109/TNNLS.2018.2872995. Epub 2018 Oct 24.
10
Cell dynamic morphology classification using deep convolutional neural networks.
Cytometry A. 2018 Jun;93(6):628-638. doi: 10.1002/cyto.a.23490. Epub 2018 May 15.

引用本文的文献

1
Current and Future Applications of PET Radiomics in Radiation Oncology.
PET Clin. 2025 Apr;20(2):185-193. doi: 10.1016/j.cpet.2025.01.002. Epub 2025 Feb 5.
4
Deep Clustering Survival Machines with Interpretable Expert Distributions.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230844. Epub 2023 Sep 1.
5
Deep learning for risk-based stratification of cognitively impaired individuals.
iScience. 2023 Aug 2;26(9):107522. doi: 10.1016/j.isci.2023.107522. eCollection 2023 Sep 15.
6
Survival analysis using deep learning with medical imaging.
Int J Biostat. 2023 Jun 14;20(1):1-12. doi: 10.1515/ijb-2022-0113. eCollection 2024 May 1.
7
Deep learning-based framework for slide-based histopathological image analysis.
Sci Rep. 2022 Nov 9;12(1):19075. doi: 10.1038/s41598-022-23166-0.
9
Learning-based Cancer Treatment Outcome Prognosis using Multimodal Biomarkers.
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):231-244. doi: 10.1109/trpms.2021.3104297. Epub 2021 Aug 12.

本文引用的文献

1
3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:212-220. doi: 10.1007/978-3-319-46723-8_25. Epub 2016 Oct 2.
3
Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI.
Clin Cancer Res. 2016 Nov 1;22(21):5256-5264. doi: 10.1158/1078-0432.CCR-15-2997. Epub 2016 May 16.
4
Can clinical factors be used as a selection tool for an organ-preserving strategy in rectal cancer?
Acta Oncol. 2016 Aug;55(8):1047-52. doi: 10.3109/0284186X.2016.1167954. Epub 2016 May 4.
5
Radiomics: Images Are More than Pictures, They Are Data.
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
6
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1904-16. doi: 10.1109/TPAMI.2015.2389824.
7
8
Radiomics: extracting more information from medical images using advanced feature analysis.
Eur J Cancer. 2012 Mar;48(4):441-6. doi: 10.1016/j.ejca.2011.11.036. Epub 2012 Jan 16.
10
Regression modelling strategies for improved prognostic prediction.
Stat Med. 1984 Apr-Jun;3(2):143-52. doi: 10.1002/sim.4780030207.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验