Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
J Bacteriol. 2020 Mar 11;202(7). doi: 10.1128/JB.00693-19.
Bacterial cell division requires the assembly of a multiprotein division machinery, or divisome, that remodels the cell envelope to cause constriction. The cytoskeletal protein FtsZ forms a ringlike scaffold for the divisome at the incipient division site. FtsZ has three major regions: a conserved GTPase domain that polymerizes into protofilaments on binding GTP, a C-terminal conserved peptide (CTC) required for binding membrane-anchoring proteins, and a C-terminal linker (CTL) region of varied length and low sequence conservation. Recently, we demonstrated that the CTL regulates FtsZ polymerization properties and Z-ring structure and cell wall metabolism In , an FtsZ variant lacking the CTL (designated ΔCTL) can recruit all known divisome members and drive local cell wall synthesis but has dominant lethal effects on cell wall metabolism. To understand the underlying mechanism of the CTL-dependent regulation of cell wall metabolism, we expressed chimeras of FtsZ domains from and and observed that the GTPase domain fused to the CTC phenocopies ΔCTL. By investigating the contributions of FtsZ-binding partners, we identified variants of FtsA, a known membrane anchor for FtsZ, that delay or exacerbate the ΔCTL phenotype. Additionally, we observed that the ΔCTL protein forms extended helical structures upon FtsA overproduction. We propose that misregulation downstream of defective ΔCTL assembly is propagated through the interaction between the CTC and FtsA. Overall, our study provides mechanistic insights into the CTL-dependent regulation of cell wall enzymes downstream of FtsZ polymerization. Bacterial cell division is essential and requires the recruitment and regulation of a complex network of proteins needed to initiate and guide constriction and cytokinesis. FtsZ serves as a master regulator for this process, and its function is highly dependent on both its assembly into the canonical Z ring and interactions with protein binding partners, all of which results in the activation of enzymes that remodel the cell wall to drive constriction. Using mutants of FtsZ, we have elaborated on the role of its C-terminal linker domain in regulating Z-ring stability and dynamics, as well as the requirement for its conserved C-terminal domain and interaction with the membrane-anchoring protein FtsA for regulating the process of cell wall remodeling for constriction.
细菌细胞分裂需要组装一个多蛋白分裂机制,即分裂体,以重塑细胞包膜以引起收缩。细胞骨架蛋白 FtsZ 在初始分裂部位形成分裂体的环状支架。FtsZ 有三个主要区域:一个保守的 GTPase 结构域,在结合 GTP 时聚合成长原纤维,一个 C 端保守肽(CTC),用于结合膜锚定蛋白,和一个 C 端连接子(CTL)区域,其长度和序列一致性变化。最近,我们证明了 CTL 调节 FtsZ 聚合特性和 Z 环结构和细胞壁代谢。在,缺乏 CTL 的 FtsZ 变体(指定为 ΔCTL)可以招募所有已知的分裂体成员并驱动局部细胞壁合成,但对细胞壁代谢有显性致死效应。为了了解 CTL 依赖性调节细胞壁代谢的潜在机制,我们表达了来自和的 FtsZ 结构域嵌合体,并观察到与 CTL 融合的 GTPase 结构域模拟了 ΔCTL。通过研究 FtsZ 结合伙伴的贡献,我们鉴定了 FtsA 的变体,FtsA 是 FtsZ 的已知膜锚定蛋白,它可以延迟或加剧 ΔCTL 表型。此外,我们观察到 ΔCTL 蛋白在 FtsA 过表达时形成延伸的螺旋结构。我们提出,缺陷 ΔCTL 组装下游的失调是通过 CTC 和 FtsA 之间的相互作用传播的。总的来说,我们的研究为 FtsZ 聚合下游的细胞壁酶的 CTL 依赖性调节提供了机制上的见解。细菌细胞分裂是必不可少的,需要募集和调节复杂的蛋白质网络,这些蛋白质网络需要启动和指导收缩和细胞分裂。FtsZ 是这个过程的主要调节剂,其功能高度依赖于其组装成典型的 Z 环和与蛋白质结合伙伴的相互作用,所有这些都导致激活重塑细胞壁以驱动收缩的酶。我们使用 FtsZ 的突变体,详细阐述了其 C 端连接子域在调节 Z 环稳定性和动力学以及保守 C 端域和与膜锚定蛋白 FtsA 的相互作用在调节细胞壁重塑过程中的作用对于收缩。