Department of Physics, University of California, San Diego, La Jolla, United States.
BioCircuits Institute, University of California, San Diego, La Jolla, United States.
Elife. 2020 Jan 14;9:e48885. doi: 10.7554/eLife.48885.
Diverse interactions among species within bacterial colonies lead to intricate spatiotemporal dynamics, which can affect their growth and survival. Here, we describe the emergence of complex structures in a colony grown from mixtures of motile and non-motile bacterial species on a soft agar surface. Time-lapse imaging shows that non-motile bacteria 'hitchhike' on the motile bacteria as the latter migrate outward. The non-motile bacteria accumulate at the boundary of the colony and trigger an instability that leaves behind striking flower-like patterns. The mechanism of the front instability governing this pattern formation is elucidated by a mathematical model for the frictional motion of the colony interface, with friction depending on the local concentration of the non-motile species. A more elaborate two-dimensional phase-field model that explicitly accounts for the interplay between growth, mechanical stress from the motile species, and friction provided by the non-motile species, fully reproduces the observed flower-like patterns.
细菌菌落中不同物种之间的多样相互作用导致了复杂的时空动态,这可能会影响它们的生长和存活。在这里,我们描述了在软琼脂表面上由运动和非运动细菌物种混合物生长的菌落中复杂结构的出现。延时成像显示,非运动细菌会在运动细菌向外迁移时“搭便车”。非运动细菌在菌落的边界处积累,并引发一种不稳定性,留下引人注目的花状图案。通过对菌落界面摩擦运动的数学模型阐明了控制这种图案形成的前缘不稳定性的机制,其中摩擦取决于非运动物种的局部浓度。一个更精细的二维相场模型,明确考虑了生长、运动物种产生的机械应力以及非运动物种提供的摩擦力之间的相互作用,完全再现了观察到的花状图案。