Wang Yukui, Wang Han, Zhang Yuxin, He Xiaolong, Wang Zhenlong, Chi Guanxin, Chen Xiang, Song Mingshan
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China.
Micromachines (Basel). 2020 Jan 7;11(1):66. doi: 10.3390/mi11010066.
This paper develops an array micro-grooves manufacturing method using micro electrochemical machining (ECM) with disk electrode, which is prepared by in-situ micro wire electrical discharge machining (WEDM). This technology focuses on the difficulty of array structure manufacture in micro-electro-mechanical systems (MEMS). A micro-ECM system is built based on the micro-WEDM machine to achieve high precision processing of the array micro-grooves. Since micro-WEDM has good performance in high precision machining of the rotating structure, single and multi-edge disk electrodes can be fabricated in-situ using graphite. The as-prepared disk tool electrode is directly used for micro-electrochemical milling of the array micro-grooves without disassembling away from the device, which avoids the positioning error caused by the re-clamping of the disk electrode. With the advantages of high surface quality and no electrode loss, micro-ECM improves the manufacture performance of the micro-parts. Through wire path optimization, the shape accuracy of the disk edge is improved. After the research of the micro-ECM parameters, the process is improved, and finally, the high precision array micro-grooves are obtained. This method combines the advantages of micro-WEDM and disk electrode micro-ECM milling, and it is convenient for large-scale manufacture of array micro-structures on micro-parts and MEMS.
本文提出了一种采用圆盘电极微电化学加工(ECM)制造阵列微槽的方法,该圆盘电极是通过原位微线电火花加工(WEDM)制备的。这项技术聚焦于微机电系统(MEMS)中阵列结构制造的难题。基于微线电火花加工机床构建了一个微电化学加工系统,以实现阵列微槽的高精度加工。由于微线电火花加工在旋转结构的高精度加工方面具有良好性能,因此可以使用石墨原位制造单刃和多刃圆盘电极。制备好的圆盘工具电极无需从装置上拆卸下来,直接用于阵列微槽的微电化学铣削加工,避免了圆盘电极重新装夹所引起的定位误差。微电化学加工具有表面质量高和无电极损耗的优点,提高了微零件的制造性能。通过优化走丝路径,提高了圆盘边缘的形状精度。经过对微电化学加工参数的研究,改进了加工工艺,最终获得了高精度的阵列微槽。该方法结合了微线电火花加工和圆盘电极微电化学铣削的优点,便于在微零件和MEMS上大规模制造阵列微结构。