Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada.
BMC Biol. 2020 Jan 15;18(1):7. doi: 10.1186/s12915-019-0732-7.
Abnormal accumulation of amyloid β oligomers (AβO), a hallmark of Alzheimer's disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AβO affects PV and SST interneuron circuits is unclear. Through optogenetic manipulation of PV and SST interneurons and computational modeling of the hippocampal neural circuits, we dissected the contributions of PV and SST interneuron circuit dysfunctions on AβO-induced impairments of hippocampal theta-nested gamma oscillations and oscillation-induced LTP.
Targeted whole-cell patch-clamp recordings and optogenetic manipulations of PV and SST interneurons during in vivo-like, optogenetically induced theta-nested gamma oscillations in vitro revealed that AβO causes synapse-specific dysfunction in PV and SST interneurons. AβO selectively disrupted CA1 pyramidal cells (PC)-to-PV interneuron and PV-to-PC synapses to impair theta-nested gamma oscillogenesis. In contrast, while having no effect on PC-to-SST or SST-to-PC synapses, AβO selectively disrupted SST interneuron-mediated disinhibition to CA1 PC to impair theta-nested gamma oscillation-induced spike timing-dependent LTP (tLTP). Such AβO-induced impairments of gamma oscillogenesis and oscillation-induced tLTP were fully restored by optogenetic activation of PV and SST interneurons, respectively, further supporting synapse-specific dysfunctions in PV and SST interneurons. Finally, computational modeling of hippocampal neural circuits including CA1 PC, PV, and SST interneurons confirmed the experimental observations and further revealed distinct functional roles of PV and SST interneurons in theta-nested gamma oscillations and tLTP induction.
Our results reveal that AβO causes synapse-specific dysfunctions in PV and SST interneurons and that optogenetic modulations of these interneurons present potential therapeutic targets for restoring hippocampal network oscillations and synaptic plasticity impairments in Alzheimer's disease.
阿尔茨海默病的一个标志是淀粉样 β 寡聚物(AβO)的异常积累,它损害了海马体θ嵌套γ振荡和长时程增强(LTP),而这些被认为是学习和记忆的基础。钙结合蛋白阳性(PV)和生长抑素阳性(SST)中间神经元在θ嵌套γ振荡发生和 LTP 诱导中起着至关重要的作用。然而,AβO 如何影响 PV 和 SST 中间神经元回路尚不清楚。通过光遗传学操纵 PV 和 SST 中间神经元,并对海马体神经网络进行计算建模,我们剖析了 PV 和 SST 中间神经元回路功能障碍对 AβO 诱导的海马体θ嵌套γ振荡和振荡诱导的 LTP 的影响。
在体外类似于体内的光遗传诱导θ嵌套γ振荡过程中,对 PV 和 SST 中间神经元进行靶向全细胞贴附式记录和光遗传学操纵,结果表明 AβO 导致 PV 和 SST 中间神经元的突触特异性功能障碍。AβO 选择性地破坏 CA1 锥体神经元(PC)与 PV 中间神经元以及 PV 与 PC 的突触,从而损害θ嵌套γ振荡的发生。相比之下,虽然对 PC 与 SST 或 SST 与 PC 的突触没有影响,但 AβO 选择性地破坏 SST 中间神经元介导的去抑制作用,以损害 CA1 PC 的θ嵌套γ振荡诱导的时程依赖长时程增强(tLTP)。通过光遗传学激活 PV 和 SST 中间神经元,分别完全恢复了 AβO 诱导的γ振荡发生和振荡诱导的 tLTP 的损伤,进一步支持了 PV 和 SST 中间神经元的突触特异性功能障碍。最后,包括 CA1 PC、PV 和 SST 中间神经元在内的海马体神经网络的计算模型证实了实验观察结果,并进一步揭示了 PV 和 SST 中间神经元在θ嵌套γ振荡和 tLTP 诱导中的不同功能作用。
我们的研究结果表明,AβO 导致了 PV 和 SST 中间神经元的突触特异性功能障碍,而这些中间神经元的光遗传学调节为恢复阿尔茨海默病中海马体网络振荡和突触可塑性损伤提供了潜在的治疗靶点。