Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL.
Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL.
Crit Care Med. 2020 Feb;48(2):e133-e140. doi: 10.1097/CCM.0000000000004095.
Cardiogenic shock following cardiopulmonary resuscitation for sudden cardiac arrest is common, occurring even in the absence of acute coronary artery occlusion, and contributes to high rates of postcardiopulmonary resuscitation mortality. The pathophysiology of this shock is unclear, and effective therapies for improving clinical outcomes are lacking.
Laboratory investigation.
University laboratory.
C57BL/6 adult female mice.
Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 4, 8, 12, or 16-minute potassium chloride-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of vehicle (phosphate-buffered saline) or suppressor of site IQ electron leak, an inhibitor of superoxide production by complex I of the mitochondrial electron transport chain. Suppressor of site IQ electron leak and vehicle were administered during cardiopulmonary resuscitation.
Using a murine model of asystolic cardiac arrest, we discovered that duration of cardiac arrest prior to cardiopulmonary resuscitation determined postresuscitation success rates, degree of neurologic injury, and severity of myocardial dysfunction. Post-cardiopulmonary resuscitation cardiac dysfunction was not associated with myocardial necrosis, apoptosis, inflammation, or mitochondrial permeability transition pore opening. Furthermore, left ventricular function recovered within 72 hours of cardiopulmonary resuscitation, indicative of myocardial stunning. Postcardiopulmonary resuscitation, the myocardium exhibited increased reactive oxygen species and evidence of mitochondrial injury, specifically reperfusion-induced reactive oxygen species generation at electron transport chain complex I. Suppressor of site IQ electron leak, which inhibits complex I-dependent reactive oxygen species generation by suppression of site IQ electron leak, decreased myocardial reactive oxygen species generation and improved postcardiopulmonary resuscitation myocardial function, neurologic outcomes, and survival.
The severity of cardiogenic shock following asystolic cardiac arrest is dependent on the length of cardiac arrest prior to cardiopulmonary resuscitation and is mediated by myocardial stunning resulting from mitochondrial electron transport chain complex I dysfunction. A novel pharmacologic agent targeting this mechanism, suppressor of site IQ electron leak, represents a potential, practical therapy for improving sudden cardiac arrest resuscitation outcomes.
心肺复苏后心源性休克在心脏骤停中很常见,即使没有急性冠状动脉闭塞也会发生,并导致心肺复苏后死亡率居高不下。这种休克的病理生理学尚不清楚,缺乏有效的治疗方法来改善临床结果。
实验室研究。
大学实验室。
C57BL/6 成年雌性小鼠。
麻醉并通气的成年雌性 C57BL/6 野生型小鼠经历了 4、8、12 或 16 分钟的氯化钾诱导的心脏骤停,然后进行 90 秒的心肺复苏。然后,小鼠被随机分为单次静脉注射载体(磷酸盐缓冲盐水)或抑制位点 IQ 电子漏,一种抑制线粒体电子传递链复合物 I 中超氧化物产生的抑制剂。在心肺复苏期间给予抑制位点 IQ 电子漏和载体。
使用非搏动性心脏骤停的小鼠模型,我们发现心肺复苏前心脏骤停的持续时间决定了复苏后的成功率、神经损伤程度和心肌功能障碍的严重程度。心肺复苏后心功能障碍与心肌坏死、细胞凋亡、炎症或线粒体通透性转换孔开放无关。此外,心肺复苏后 72 小时内心脏功能恢复,提示心肌顿抑。心肺复苏后,心肌中活性氧增加,线粒体损伤证据,特别是电子传递链复合物 I 处再灌注诱导的活性氧生成。抑制位点 IQ 电子漏通过抑制位点 IQ 电子漏抑制复合物 I 依赖性活性氧生成,减少心肌活性氧生成,改善心肺复苏后心肌功能、神经结局和存活率。
非搏动性心脏骤停后心源性休克的严重程度取决于心肺复苏前心脏骤停的时间长度,并由线粒体电子传递链复合物 I 功能障碍引起的心肌顿抑介导。一种针对该机制的新型药物,抑制位点 IQ 电子漏,代表了改善心脏骤停复苏结果的一种潜在、实用的治疗方法。