Suppr超能文献

无线通信网络上未知大规模系统的分散式事件触发在线自适应控制

Decentralized Event-Triggered Online Adaptive Control of Unknown Large-Scale Systems Over Wireless Communication Networks.

作者信息

Su Hanguang, Zhang Huaguang, Liang Xiaodong, Liu Chong

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4907-4919. doi: 10.1109/TNNLS.2019.2959005. Epub 2020 Oct 30.

Abstract

In this article, a novel online decentralized event-triggered control scheme is proposed for a class of nonlinear interconnected large-scale systems subject to unknown internal system dynamics and interconnected terms. First, by designing a neural network-based identifier, the unknown internal dynamics of the interconnected systems is reconstructed. Then, the adaptive critic design method is used to learn the approximate optimal control policies in the context of event-triggered mechanism. Specifically, the event-based control processes of different subsystems are independent, asynchronous, and decentralized. That is, the decentralized event-triggering conditions and the controllers only rely on the local state information of the corresponding subsystems, which avoids the transmissions of the state information between the subsystems over the wireless communication networks. Then, with the help of Lyapunov's theorem, the states of the developed closed-loop control system and the critic weight estimation errors are proved to be uniformly ultimately bounded. Finally, the effectiveness and applicability of the event-based control method are verified by an illustrative numerical example and a practical example.

摘要

本文针对一类具有未知内部系统动态和互联项的非线性互联大系统,提出了一种新颖的在线分散事件触发控制方案。首先,通过设计基于神经网络的标识符,重构互联系统的未知内部动态。然后,采用自适应评判设计方法在事件触发机制下学习近似最优控制策略。具体而言,不同子系统基于事件的控制过程是独立、异步和分散的。也就是说,分散事件触发条件和控制器仅依赖于相应子系统的局部状态信息,这避免了子系统间通过无线通信网络进行状态信息传输。然后,借助李雅普诺夫定理,证明了所构建闭环控制系统的状态和评判权重估计误差是一致最终有界的。最后,通过一个数值示例和一个实际例子验证了基于事件控制方法的有效性和适用性。

相似文献

1
Decentralized Event-Triggered Online Adaptive Control of Unknown Large-Scale Systems Over Wireless Communication Networks.
IEEE Trans Neural Netw Learn Syst. 2020 Nov;31(11):4907-4919. doi: 10.1109/TNNLS.2019.2959005. Epub 2020 Oct 30.
4
Decentralized Event-Triggered Adaptive Control of Discrete-Time Nonzero-Sum Games Over Wireless Sensor-Actuator Networks With Input Constraints.
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4254-4266. doi: 10.1109/TNNLS.2019.2953613. Epub 2020 Jan 13.
5
Decentralized Event-Triggered Control for a Class of Nonlinear-Interconnected Systems Using Reinforcement Learning.
IEEE Trans Cybern. 2021 Feb;51(2):635-648. doi: 10.1109/TCYB.2019.2946122. Epub 2021 Jan 15.
7
Dynamic Event-Sampled Control of Interconnected Nonlinear Systems Using Reinforcement Learning.
IEEE Trans Neural Netw Learn Syst. 2022 Jun 6;PP. doi: 10.1109/TNNLS.2022.3178017.
8
Approximate Optimal Distributed Control of Nonlinear Interconnected Systems Using Event-Triggered Nonzero-Sum Games.
IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1512-1522. doi: 10.1109/TNNLS.2018.2869896. Epub 2018 Oct 8.
9
Particle swarm optimized neural networks based local tracking control scheme of unknown nonlinear interconnected systems.
Neural Netw. 2021 Feb;134:54-63. doi: 10.1016/j.neunet.2020.09.020. Epub 2020 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验