Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, UK.
Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nature. 2020 Jan;577(7791):572-575. doi: 10.1038/s41586-019-1909-5. Epub 2020 Jan 15.
The CRISPR system in bacteria and archaea provides adaptive immunity against mobile genetic elements. Type III CRISPR systems detect viral RNA, resulting in the activation of two regions of the Cas10 protein: an HD nuclease domain (which degrades viral DNA) and a cyclase domain (which synthesizes cyclic oligoadenylates from ATP). Cyclic oligoadenylates in turn activate defence enzymes with a CRISPR-associated Rossmann fold domain, sculpting a powerful antiviral response that can drive viruses to extinction. Cyclic nucleotides are increasingly implicated in host-pathogen interactions. Here we identify a new family of viral anti-CRISPR (Acr) enzymes that rapidly degrade cyclic tetra-adenylate (cA). The viral ring nuclease AcrIII-1 is widely distributed in archaeal and bacterial viruses and in proviruses. The enzyme uses a previously unknown fold to bind cA specifically, and a conserved active site to rapidly cleave this signalling molecule, allowing viruses to neutralize the type III CRISPR defence system. The AcrIII-1 family has a broad host range, as it targets cA signalling molecules rather than specific CRISPR effector proteins. Our findings highlight the crucial role of cyclic nucleotide signalling in the conflict between viruses and their hosts.
细菌和古菌中的 CRISPR 系统为其提供了针对移动遗传元件的适应性免疫。III 型 CRISPR 系统可检测病毒 RNA,继而激活 Cas10 蛋白的两个区域:一个 HD 核酸酶结构域(可降解病毒 DNA)和一个环化酶结构域(利用 ATP 合成环状寡聚腺苷酸)。反过来,环状寡聚腺苷酸又激活具有 CRISPR 相关 Rossmann 折叠结构域的防御酶,由此形成强大的抗病毒反应,从而使病毒灭绝。环状核苷酸在宿主-病原体相互作用中越来越受到关注。本文中,我们鉴定出一类新型病毒抗 CRISPR(Acr)酶,其可快速降解环四腺苷酸(cA)。该酶利用一种先前未知的折叠结构特异性结合 cA,并利用保守的活性位点快速切割这一信号分子,使病毒得以中和 III 型 CRISPR 防御系统。AcrIII-1 家族宿主范围广泛,因为其靶向的是 cA 信号分子,而非特定的 CRISPR 效应蛋白。我们的研究结果强调了环状核苷酸信号在病毒与其宿主之间的冲突中的关键作用。