Zeng Fanyan, Liu Hongyan, Pan Yang, Yu Maohui, Qu Yaohui, Yuan Cailei
Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics , Jiangxi Normal University , Nanchang , Jiangxi 330022 , People's Republic of China.
College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , People's Republic of China.
ACS Appl Mater Interfaces. 2020 Feb 5;12(5):6205-6216. doi: 10.1021/acsami.9b18851. Epub 2020 Jan 27.
Conversion-type anode materials possess high theoretical capacity for sodium-ion batteries (SIBs), owing to multi-electron transmission (2-6 electrons). Mo-based chalcogenides are a class of great promise, high-capacity host materials, but their development still undergoes serious volume changes and low transport kinetics during the cycling process. Here, MoO nanoparticles anchored on N-doped carbon nanorod bundles (N-CNRBs/MoO) are synthesized by a facile self-polymerized route and a following annealing. After hydrothermal sulfuration, N-CNRBs/MoO composites are encapsulated by surface growth of ultrathin MoS nanosheets, acquiring hierarchical N-CNRBs/MoO@MoS composites. Serving as the SIB anode, the N-CNRBs/MoO@MoS electrode exhibits significantly improved sodium-ion storage properties. The reversible capacity is up to 554.4 mA h g at 0.05 A g and maintains 249.3 mA h g even at 10.0 A g. During 5000 cycles, no obvious capacity decay is observed and the reversible capacities retain 334.8 mA h g at 3.0 A g and 301.4 mA h g at 5.0 A g. These properties could be ascribed to the vertical encapsulation of MoS nanosheets on high-crystalline N-CNRBs/MoO substrates. The hierarchical architecture and unique heterostructure between MoO and MoS synergistically facilitate sodium-ion diffusion, relieve volume changes, and boost pseudocapacitive charge storage of N-CNRBs/MoO@MoS electrode. Therefore, the rational growth of nanosheets on complex substrates shows promising potential to construct anode materials for high-performance batteries.
转换型负极材料由于多电子传输(2 - 6个电子)而对钠离子电池(SIB)具有较高的理论容量。钼基硫族化合物是一类极具潜力的高容量主体材料,但其在循环过程中仍存在严重的体积变化和低传输动力学问题。在此,通过简便的自聚合路线及后续退火合成了锚定在氮掺杂碳纳米棒束上的MoO纳米颗粒(N - CNRBs/MoO)。经过水热硫化后,N - CNRBs/MoO复合材料被超薄MoS纳米片的表面生长所包覆,从而获得分级结构的N - CNRBs/MoO@MoS复合材料。作为SIB负极,N - CNRBs/MoO@MoS电极展现出显著改善的钠离子存储性能。在0.05 A g时可逆容量高达554.4 mA h g - 1,即使在10.0 A g时仍保持249.3 mA h g - 1。在5000次循环中,未观察到明显的容量衰减,在3.0 A g时可逆容量保持在334.8 mA h g - 1,在5.0 A g时保持在301.4 mA h g - 1。这些性能可归因于MoS纳米片在高结晶度的N - CNRBs/MoO基底上的垂直包覆。MoO和MoS之间的分级结构和独特异质结构协同促进了钠离子扩散,缓解了体积变化,并增强了N - CNRBs/MoO@MoS电极的赝电容电荷存储。因此,在复杂基底上合理生长纳米片对于构建高性能电池的负极材料显示出有前景的潜力。