Sun Yulin, Zhang Zhao, Jiang Weiming, Zhang Zheng, Zhang Li, Yan Shuicheng, Wang Meng
IEEE Trans Neural Netw Learn Syst. 2020 Oct;31(10):4303-4317. doi: 10.1109/TNNLS.2019.2954545. Epub 2020 Jan 14.
In this article, we propose a structured robust adaptive dictionary pair learning (RA-DPL) framework for the discriminative sparse representation (SR) learning. To achieve powerful representation ability of the available samples, the setting of RA-DPL seamlessly integrates the robust projective DPL, locality-adaptive SRs, and discriminative coding coefficients learning into a unified learning framework. Specifically, RA-DPL improves existing projective DPL in four perspectives. First, it applies a sparse l -norm-based metric to encode the reconstruction error to deliver the robust projective dictionary pairs, and the l -norm has the potential to minimize the error. Second, it imposes the robust l -norm clearly on the analysis dictionary to ensure the sparse property of the coding coefficients rather than using the costly l/l -norm. As such, the robustness of the data representation and the efficiency of the learning process are jointly considered to guarantee the efficacy of our RA-DPL. Third, RA-DPL conceives a structured reconstruction weight learning paradigm to preserve the local structures of the coding coefficients within each class clearly in an adaptive manner, which encourages to produce the locality preserving representations. Fourth, it also considers improving the discriminating ability of coding coefficients and dictionary by incorporating a discriminating function, which can ensure high intraclass compactness and interclass separation in the code space. Extensive experiments show that our RA-DPL can obtain superior performance over other state of the arts.
在本文中,我们提出了一种用于判别式稀疏表示(SR)学习的结构化鲁棒自适应字典对学习(RA-DPL)框架。为了实现对可用样本的强大表示能力,RA-DPL的设置将鲁棒投影字典对学习、局部自适应SR以及判别编码系数学习无缝集成到一个统一的学习框架中。具体而言,RA-DPL从四个方面改进了现有的投影字典对学习。首先,它应用基于稀疏l -范数的度量来编码重构误差,以生成鲁棒投影字典对,并且l -范数有潜力使误差最小化。其次,它明确地将鲁棒l -范数施加于分析字典上,以确保编码系数的稀疏特性,而不是使用代价高昂的l/l -范数。这样,数据表示的鲁棒性和学习过程的效率被共同考虑,以保证我们的RA-DPL的有效性。第三,RA-DPL构想了一种结构化重构权重学习范式,以自适应方式清晰地保留每个类内编码系数的局部结构,这有助于产生局部保持表示。第四,它还通过纳入一个判别函数来考虑提高编码系数和字典的判别能力,这可以确保在码空间中具有高类内紧致性和类间分离性。大量实验表明,我们的RA-DPL能够获得优于其他现有技术的性能。