Cui Can, Thurnhofer-Hemsi Karl, Soroushmehr Reza, Mishra Abinash, Gryak Jonathan, Dominguez Enrique, Najarian Kayvan, Lopez-Rubio Ezequiel
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1002-1005. doi: 10.1109/EMBC.2019.8856665.
Image segmentation is a common goal in many medical applications, as its use can improve diagnostic capability and outcome prediction. In order to assess the wound healing rate in diabetic foot ulcers, some parameters from the wound area are measured. However, heterogeneity of diabetic skin lesions and the noise present in images captured by digital cameras make wound extraction a difficult task. In this work, a Deep Learning based method for accurate segmentation of wound regions is proposed. In the proposed method, input images are first processed to remove artifacts and then fed into a Convolutional Neural Network (CNN), producing a probability map. Finally, the probability maps are processed to extract the wound region. We also address the problem of removing some false positives. Experiments show that our method can achieve high performance in terms of segmentation accuracy and Dice index.
图像分割是许多医学应用中的一个常见目标,因为它的使用可以提高诊断能力和结果预测。为了评估糖尿病足溃疡的伤口愈合率,需要测量伤口区域的一些参数。然而,糖尿病皮肤病变的异质性以及数码相机拍摄图像中存在的噪声使得伤口提取成为一项艰巨的任务。在这项工作中,提出了一种基于深度学习的准确分割伤口区域的方法。在所提出的方法中,首先对输入图像进行处理以去除伪影,然后将其输入到卷积神经网络(CNN)中,生成概率图。最后,对概率图进行处理以提取伤口区域。我们还解决了去除一些误报的问题。实验表明,我们的方法在分割精度和骰子系数方面可以实现高性能。