Suppr超能文献

使用卷积神经网络的糖尿病伤口分割

Diabetic Wound Segmentation using Convolutional Neural Networks.

作者信息

Cui Can, Thurnhofer-Hemsi Karl, Soroushmehr Reza, Mishra Abinash, Gryak Jonathan, Dominguez Enrique, Najarian Kayvan, Lopez-Rubio Ezequiel

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1002-1005. doi: 10.1109/EMBC.2019.8856665.

Abstract

Image segmentation is a common goal in many medical applications, as its use can improve diagnostic capability and outcome prediction. In order to assess the wound healing rate in diabetic foot ulcers, some parameters from the wound area are measured. However, heterogeneity of diabetic skin lesions and the noise present in images captured by digital cameras make wound extraction a difficult task. In this work, a Deep Learning based method for accurate segmentation of wound regions is proposed. In the proposed method, input images are first processed to remove artifacts and then fed into a Convolutional Neural Network (CNN), producing a probability map. Finally, the probability maps are processed to extract the wound region. We also address the problem of removing some false positives. Experiments show that our method can achieve high performance in terms of segmentation accuracy and Dice index.

摘要

图像分割是许多医学应用中的一个常见目标,因为它的使用可以提高诊断能力和结果预测。为了评估糖尿病足溃疡的伤口愈合率,需要测量伤口区域的一些参数。然而,糖尿病皮肤病变的异质性以及数码相机拍摄图像中存在的噪声使得伤口提取成为一项艰巨的任务。在这项工作中,提出了一种基于深度学习的准确分割伤口区域的方法。在所提出的方法中,首先对输入图像进行处理以去除伪影,然后将其输入到卷积神经网络(CNN)中,生成概率图。最后,对概率图进行处理以提取伤口区域。我们还解决了去除一些误报的问题。实验表明,我们的方法在分割精度和骰子系数方面可以实现高性能。

相似文献

1
Diabetic Wound Segmentation using Convolutional Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1002-1005. doi: 10.1109/EMBC.2019.8856665.
2
Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
Comput Methods Programs Biomed. 2019 Aug;177:17-30. doi: 10.1016/j.cmpb.2019.05.010. Epub 2019 May 15.
3
Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
Comput Methods Programs Biomed. 2019 Sep;178:289-301. doi: 10.1016/j.cmpb.2019.07.005. Epub 2019 Jul 8.
4
Skin lesion segmentation using high-resolution convolutional neural network.
Comput Methods Programs Biomed. 2020 Apr;186:105241. doi: 10.1016/j.cmpb.2019.105241. Epub 2019 Dec 4.
5
Image segmentation using transfer learning and Fast R-CNN for diabetic foot wound treatments.
Front Public Health. 2022 Sep 20;10:969846. doi: 10.3389/fpubh.2022.969846. eCollection 2022.
6
Diabetic foot ulcers segmentation challenge report: Benchmark and analysis.
Med Image Anal. 2024 May;94:103153. doi: 10.1016/j.media.2024.103153. Epub 2024 Mar 24.
7
Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images.
Med Image Anal. 2019 Oct;57:186-196. doi: 10.1016/j.media.2019.07.005. Epub 2019 Jul 15.
8
Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
Comput Methods Programs Biomed. 2018 Aug;162:221-231. doi: 10.1016/j.cmpb.2018.05.027. Epub 2018 May 19.
10
Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1895-1910. doi: 10.1007/s11548-017-1649-7. Epub 2017 Jul 31.

引用本文的文献

1
Construction and validation of a deep learning-based diagnostic model for segmentation and classification of diabetic foot.
Front Endocrinol (Lausanne). 2025 Apr 9;16:1543192. doi: 10.3389/fendo.2025.1543192. eCollection 2025.
2
Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics.
Theranostics. 2025 Jan 2;15(5):1662-1688. doi: 10.7150/thno.105109. eCollection 2025.
3
Advances in Machine Learning-Aided Thermal Imaging for Early Detection of Diabetic Foot Ulcers: A Review.
Biosensors (Basel). 2024 Dec 13;14(12):614. doi: 10.3390/bios14120614.
4
A review of non-invasive sensors and artificial intelligence models for diabetic foot monitoring.
Front Physiol. 2022 Oct 21;13:924546. doi: 10.3389/fphys.2022.924546. eCollection 2022.
5
On diabetic foot ulcer knowledge gaps, innovation, evaluation, prediction markers, and clinical needs.
J Diabetes Complications. 2022 Nov;36(11):108317. doi: 10.1016/j.jdiacomp.2022.108317. Epub 2022 Sep 30.
6
Advances in non-invasive biosensing measures to monitor wound healing progression.
Front Bioeng Biotechnol. 2022 Sep 23;10:952198. doi: 10.3389/fbioe.2022.952198. eCollection 2022.
7
Utilization of smartphone and tablet camera photographs to predict healing of diabetes-related foot ulcers.
Comput Biol Med. 2020 Nov;126:104042. doi: 10.1016/j.compbiomed.2020.104042. Epub 2020 Oct 8.

本文引用的文献

1
Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
Comput Methods Programs Biomed. 2018 Jun;159:59-69. doi: 10.1016/j.cmpb.2018.01.027. Epub 2018 Feb 6.
2
Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma.
Int J Comput Assist Radiol Surg. 2017 Jun;12(6):1021-1030. doi: 10.1007/s11548-017-1567-8. Epub 2017 Mar 24.
3
A unified framework for automatic wound segmentation and analysis with deep convolutional neural networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2415-8. doi: 10.1109/EMBC.2015.7318881.
4
Improving dermoscopy image classification using color constancy.
IEEE J Biomed Health Inform. 2015 May;19(3):1146-52. doi: 10.1109/JBHI.2014.2336473. Epub 2014 Jul 25.
6
Binary tissue classification on wound images with neural networks and bayesian classifiers.
IEEE Trans Med Imaging. 2010 Feb;29(2):410-27. doi: 10.1109/TMI.2009.2033595. Epub 2009 Oct 13.
8
Edge-based color constancy.
IEEE Trans Image Process. 2007 Sep;16(9):2207-14. doi: 10.1109/tip.2007.901808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验