Suppr超能文献

基于支持向量机和卷积神经网络-长短期记忆网络的呼吸信号烟雾吸入检测方法比较

A Comparison of SVM and CNN-LSTM Based Approach for Detecting Smoke Inhalations from Respiratory signal.

作者信息

Senyurek Volkan Y, Imtiaz Masudul H, Belsare Prajakta, Tiffany Stephen, Sazonov Edward

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3262-3265. doi: 10.1109/EMBC.2019.8856395.

Abstract

Wearable sensors have successfully been used in recent studies to monitor cigarette smoking events and analyze people's smoking behavior. Respiratory inductive plethysmography (RIP) has been employed to track breathing and to identify characteristic breathing pattern specific to smoking. Pattern recognition algorithms such as Support Vector Machine (SVM), Hidden Markov Model, Decision tree, or ensemble approaches have been used to identify smoke inhalations. However, no deep learning approaches, which have been proved effective to many time series datasets, have ever been tested yet. Hence, a Convolutional Neural Network (CNN) and Long Term Short Memory (LSTM) based approach is presented in this paper to detect smoke inhalations in the breathing signal. To illustrate the effectiveness of this deep learning approach, a traditional machine learning (SVM) based approach was used for comparison. On the validation dataset of 120 smoking sessions performed in a laboratory setting by 30 moderate-to-heavy smokers, the CNN-LSTM approach achieved an F1-score of 72% in leave-one-subject-out (LOSO) cross-validation method whereas the classical SVM approach scored 63%. These results suggest that deep learning-based approaches might provide a better analytical method for detection of smoke inhalations than more conventional machine learning approaches.

摘要

在最近的研究中,可穿戴传感器已成功用于监测吸烟事件并分析人们的吸烟行为。呼吸感应体积描记法(RIP)已被用于追踪呼吸并识别特定于吸烟的特征呼吸模式。诸如支持向量机(SVM)、隐马尔可夫模型、决策树或集成方法等模式识别算法已被用于识别烟雾吸入。然而,尚未测试过对许多时间序列数据集已证明有效的深度学习方法。因此,本文提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)的方法来检测呼吸信号中的烟雾吸入。为了说明这种深度学习方法的有效性,使用了基于传统机器学习(SVM)的方法进行比较。在由30名中度至重度吸烟者在实验室环境中进行的120次吸烟过程的验证数据集中,CNN-LSTM方法在留一法(LOSO)交叉验证方法中实现了72%的F1分数,而经典SVM方法的得分为63%。这些结果表明,基于深度学习的方法可能比传统的机器学习方法提供更好的烟雾吸入检测分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验