An Yang, Hu Tianren, Wang Jiaqi, Lyu Juan, Banerjee Sunetra, Ling Sai Ho
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6259-6262. doi: 10.1109/EMBC.2019.8857744.
Lung cancer is one of the most fatal cancers in the world. If the lung cancer can be diagnosed at an early stage, the survival rate of patients post treatment increases dramatically. Computed Tomography (CT) diagram is an effective tool to detect lung cancer. In this paper, we proposed a novel two-stage convolution neural network (2S-CNN) to classify the lung CT images. The structure is composed of two CNNs. The first CNN is a basic CNN, whose function is to refine the input CT images to extract the ambiguous CT images. The output of first CNN is fed into another inception CNN, a simplified version of GoogLeNet, to enhance the better recognition on complex CT images. The experimental results show that our 2S-CNN structure has achieved an accuracy of 89.6%.
肺癌是世界上最致命的癌症之一。如果肺癌能够在早期被诊断出来,那么患者治疗后的生存率会显著提高。计算机断层扫描(CT)图像是检测肺癌的有效工具。在本文中,我们提出了一种新颖的两阶段卷积神经网络(2S-CNN)来对肺部CT图像进行分类。该结构由两个卷积神经网络组成。第一个卷积神经网络是一个基本的卷积神经网络,其功能是对输入的CT图像进行细化,以提取模糊的CT图像。第一个卷积神经网络的输出被输入到另一个Inception卷积神经网络(GoogLeNet的简化版本)中,以增强对复杂CT图像的更好识别。实验结果表明,我们的2S-CNN结构的准确率达到了89.6%。