Suppr超能文献

机器学习衍生的超声心动图变量表型与稳定型冠状动脉疾病心力衰竭的相关性:心脏与灵魂研究。

Association of Machine Learning-Derived Phenogroupings of Echocardiographic Variables with Heart Failure in Stable Coronary Artery Disease: The Heart and Soul Study.

机构信息

Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California.

Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California.

出版信息

J Am Soc Echocardiogr. 2020 Mar;33(3):322-331.e1. doi: 10.1016/j.echo.2019.09.010. Epub 2020 Jan 14.

Abstract

BACKGROUND

Many individual echocardiographic variables have been associated with heart failure (HF) in patients with stable coronary artery disease (CAD), but their combined utility for prediction has not been well studied.

METHODS

Unsupervised model-based cluster analysis was performed by researchers blinded to the study outcome in 1,000 patients with stable CAD on 15 transthoracic echocardiographic variables. We evaluated associations of cluster membership with HF hospitalization using Cox proportional hazards regression analysis.

RESULTS

The echo-derived clusters partitioned subjects into four phenogroupings: phenogroup 1 (n = 85) had the highest levels, phenogroups 2 (n = 314) and 3 (n = 205) displayed intermediate levels, and phenogroup 4 (n = 396) had the lowest levels of cardiopulmonary structural and functional abnormalities. Over 7.1 ± 3.2 years of follow-up, there were 198 HF hospitalizations. After multivariable adjustment for traditional cardiovascular risk factors, phenogroup 1 was associated with a nearly fivefold increased risk (hazard ratio [HR] = 4.8; 95% CI, 2.4-9.5), phenogroup 2 was associated with a nearly threefold increased risk (HR = 2.7; 95% CI, 1.4-5.0), and phenogroup 3 was associated with a nearly twofold increased risk (HR = 1.9; 95% CI, 1.0-3.8) of HF hospitalization, relative to phenogroup 4.

CONCLUSIONS

Transthoracic echocardiographic variables can be used to classify stable CAD patients into separate phenogroupings that differentiate cardiopulmonary structural and functional abnormalities and can predict HF hospitalization, independent of traditional cardiovascular risk factors.

摘要

背景

许多个体超声心动图变量与稳定型冠状动脉疾病(CAD)患者的心力衰竭(HF)相关,但它们联合预测的效用尚未得到很好的研究。

方法

在 1000 例稳定型 CAD 患者的 15 项经胸超声心动图变量上,研究者在不知道研究结果的情况下进行了无监督的基于模型的聚类分析。我们使用 Cox 比例风险回归分析评估了聚类成员与 HF 住院之间的关联。

结果

基于超声心动图的聚类将受试者分为四个表型分组:表型 1(n=85)具有最高水平,表型 2(n=314)和表型 3(n=205)显示出中等水平,表型 4(n=396)则具有最低水平的心肺结构和功能异常。在 7.1+3.2 年的随访中,有 198 例 HF 住院。在调整了传统心血管危险因素后,表型 1与近五倍的 HF 住院风险相关(风险比[HR]=4.8;95%CI,2.4-9.5),表型 2与近三倍的 HF 住院风险相关(HR=2.7;95%CI,1.4-5.0),表型 3与近两倍的 HF 住院风险相关(HR=1.9;95%CI,1.0-3.8),与表型 4 相比。

结论

经胸超声心动图变量可用于将稳定型 CAD 患者分为不同的表型分组,这些分组可区分心肺结构和功能异常,并可预测 HF 住院,独立于传统心血管危险因素。

相似文献

5
Ventricular-Vascular Coupling at Rest and after Exercise Is Associated with Heart Failure Hospitalizations in Patients With Coronary Artery Disease.
J Am Soc Echocardiogr. 2018 Nov;31(11):1212-1220.e3. doi: 10.1016/j.echo.2018.07.011. Epub 2018 Sep 8.

引用本文的文献

1
Broadening Perspectives of Artificial Intelligence in Echocardiography.
Cardiol Ther. 2024 Jun;13(2):267-279. doi: 10.1007/s40119-024-00368-3. Epub 2024 May 4.
2
Explainable machine learning using echocardiography to improve risk prediction in patients with chronic coronary syndrome.
Eur Heart J Digit Health. 2024 Jan 22;5(2):170-182. doi: 10.1093/ehjdh/ztae001. eCollection 2024 Mar.
3
Cardiac Structure and Function Phenogroups and Risk of Incident Heart Failure (from the Multi-ethnic Study of Atherosclerosis).
Am J Cardiol. 2023 Jan 15;187:54-61. doi: 10.1016/j.amjcard.2022.10.003. Epub 2022 Nov 29.
4
Planning the Follow-Up of Patients with Stable Chronic Coronary Artery Disease.
Diagnostics (Basel). 2021 Sep 25;11(10):1762. doi: 10.3390/diagnostics11101762.
5
Machine Learning Augmented Echocardiography for Diastolic Function Assessment.
Front Cardiovasc Med. 2021 Aug 4;8:711611. doi: 10.3389/fcvm.2021.711611. eCollection 2021.
6
A precision medicine approach to sex-based differences in ideal cardiovascular health.
Sci Rep. 2021 Jul 21;11(1):14848. doi: 10.1038/s41598-021-93966-3.
8
The Role of Artificial Intelligence in Cardiovascular Imaging: State of the Art Review.
Front Cardiovasc Med. 2020 Dec 23;7:618849. doi: 10.3389/fcvm.2020.618849. eCollection 2020.

本文引用的文献

2
Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy.
Eur J Heart Fail. 2019 Jan;21(1):74-85. doi: 10.1002/ejhf.1333. Epub 2018 Oct 17.
3
Phenotypic Clustering of Left Ventricular Diastolic Function Parameters: Patterns and Prognostic Relevance.
JACC Cardiovasc Imaging. 2019 Jul;12(7 Pt 1):1149-1161. doi: 10.1016/j.jcmg.2018.02.005. Epub 2018 Apr 18.
4
Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction.
Circ Cardiovasc Imaging. 2018 Apr;11(4):e007138. doi: 10.1161/CIRCIMAGING.117.007138.
5
Association of Biomarker Clusters With Cardiac Phenotypes and Mortality in Patients With HIV Infection.
Circ Heart Fail. 2018 Apr;11(4):e004312. doi: 10.1161/CIRCHEARTFAILURE.117.004312.
10
A framework for multiple imputation in cluster analysis.
Am J Epidemiol. 2013 Apr 1;177(7):718-25. doi: 10.1093/aje/kws289. Epub 2013 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验