Angelini Maria Chiara, Lucibello Carlo, Parisi Giorgio, Ricci-Tersenghi Federico, Rizzo Tommaso
Dipartimento di Fisica, Sapienza University of Rome, Rome 00185, Italy;
Artificial Intelligence Laboratory, Institute for Data Science and Analytics, Bocconi University, Milan 20136, Italy.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2268-2274. doi: 10.1073/pnas.1909872117. Epub 2020 Jan 17.
We apply to the random-field Ising model at zero temperature ([Formula: see text]) the perturbative loop expansion around the Bethe solution. A comparison with the standard ϵ expansion is made, highlighting the key differences that make the expansion around the Bethe solution much more appropriate to correctly describe strongly disordered systems, especially those controlled by a [Formula: see text] renormalization group (RG) fixed point. The latter loop expansion produces an effective theory with cubic vertices. We compute the one-loop corrections due to cubic vertices, finding additional terms that are absent in the ϵ expansion. However, these additional terms are subdominant with respect to the standard, supersymmetric ones; therefore, dimensional reduction is still valid at this order of the loop expansion.
我们将围绕贝塞耳解的微扰圈展开应用于零温度下的随机场伊辛模型([公式:见正文])。与标准的ϵ展开进行了比较,突出了关键差异,这些差异使得围绕贝塞耳解的展开更适合正确描述强无序系统,特别是那些由[公式:见正文]重整化群(RG)不动点控制的系统。后者的圈展开产生了一个具有三次顶点的有效理论。我们计算了由三次顶点引起的单圈修正,发现了ϵ展开中不存在的额外项。然而,相对于标准的超对称项,这些额外项是次主导的;因此,在这个圈展开阶次下,维数约化仍然有效。