Suppr超能文献

零温下随机磁场伊辛铁磁体围绕贝塞耳解的回路展开。

Loop expansion around the Bethe solution for the random magnetic field Ising ferromagnets at zero temperature.

作者信息

Angelini Maria Chiara, Lucibello Carlo, Parisi Giorgio, Ricci-Tersenghi Federico, Rizzo Tommaso

机构信息

Dipartimento di Fisica, Sapienza University of Rome, Rome 00185, Italy;

Artificial Intelligence Laboratory, Institute for Data Science and Analytics, Bocconi University, Milan 20136, Italy.

出版信息

Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2268-2274. doi: 10.1073/pnas.1909872117. Epub 2020 Jan 17.

Abstract

We apply to the random-field Ising model at zero temperature ([Formula: see text]) the perturbative loop expansion around the Bethe solution. A comparison with the standard ϵ expansion is made, highlighting the key differences that make the expansion around the Bethe solution much more appropriate to correctly describe strongly disordered systems, especially those controlled by a [Formula: see text] renormalization group (RG) fixed point. The latter loop expansion produces an effective theory with cubic vertices. We compute the one-loop corrections due to cubic vertices, finding additional terms that are absent in the ϵ expansion. However, these additional terms are subdominant with respect to the standard, supersymmetric ones; therefore, dimensional reduction is still valid at this order of the loop expansion.

摘要

我们将围绕贝塞耳解的微扰圈展开应用于零温度下的随机场伊辛模型([公式:见正文])。与标准的ϵ展开进行了比较,突出了关键差异,这些差异使得围绕贝塞耳解的展开更适合正确描述强无序系统,特别是那些由[公式:见正文]重整化群(RG)不动点控制的系统。后者的圈展开产生了一个具有三次顶点的有效理论。我们计算了由三次顶点引起的单圈修正,发现了ϵ展开中不存在的额外项。然而,相对于标准的超对称项,这些额外项是次主导的;因此,在这个圈展开阶次下,维数约化仍然有效。

相似文献

1
Loop expansion around the Bethe solution for the random magnetic field Ising ferromagnets at zero temperature.
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2268-2274. doi: 10.1073/pnas.1909872117. Epub 2020 Jan 17.
3
Restoration of dimensional reduction in the random-field Ising model at five dimensions.
Phys Rev E. 2017 Apr;95(4-1):042117. doi: 10.1103/PhysRevE.95.042117. Epub 2017 Apr 10.
4
Critical properties of the Ising model in hyperbolic space.
Phys Rev E. 2020 Feb;101(2-1):022124. doi: 10.1103/PhysRevE.101.022124.
5
Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions.
Phys Rev Lett. 2016 Jun 3;116(22):227201. doi: 10.1103/PhysRevLett.116.227201.
6
Linked cluster expansion on trees.
Phys Rev E. 2023 Feb;107(2-1):024108. doi: 10.1103/PhysRevE.107.024108.
7
Three-dimensional randomly dilute Ising model: Monte Carlo results.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036136. doi: 10.1103/PhysRevE.68.036136. Epub 2003 Sep 30.
8
Critical behavior of the weakly disordered Ising model: Six-loop sqrt[ɛ] expansion study.
Phys Rev E. 2021 Feb;103(2-1):022134. doi: 10.1103/PhysRevE.103.022134.
9
Magnetism in quasi-two-dimensional tri-layer LaSrMnO manganite.
Sci Rep. 2021 Jul 8;11(1):14117. doi: 10.1038/s41598-021-93290-w.
10
Non-perturbative effects in spin glasses.
Sci Rep. 2015 Mar 3;5:8697. doi: 10.1038/srep08697.

本文引用的文献

1
Evidence for Supersymmetry in the Random-Field Ising Model at D=5.
Phys Rev Lett. 2019 Jun 21;122(24):240603. doi: 10.1103/PhysRevLett.122.240603.
2
Fate of the Hybrid Transition of Bootstrap Percolation in Physical Dimension.
Phys Rev Lett. 2019 Mar 15;122(10):108301. doi: 10.1103/PhysRevLett.122.108301.
4
One-dimensional disordered Ising models by replica and cavity methods.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):012140. doi: 10.1103/PhysRevE.90.012140. Epub 2014 Jul 30.
5
Avalanches and dimensional reduction breakdown in the critical behavior of disordered systems.
Phys Rev Lett. 2013 Mar 29;110(13):135703. doi: 10.1103/PhysRevLett.110.135703. Epub 2013 Mar 26.
6
Supersymmetry and its spontaneous breaking in the random field Ising model.
Phys Rev Lett. 2011 Jul 22;107(4):041601. doi: 10.1103/PhysRevLett.107.041601. Epub 2011 Jul 18.
7
Unified picture of ferromagnetism, quasi-long-range order, and criticality in random-field models.
Phys Rev Lett. 2006 Mar 3;96(8):087202. doi: 10.1103/PhysRevLett.96.087202. Epub 2006 Mar 1.
8
Lack of self-averaging of the specific heat in the three-dimensional random-field Ising model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 2):016109. doi: 10.1103/PhysRevE.73.016109. Epub 2006 Jan 11.
9
Nonperturbative functional renormalization group for random-field models: the way out of dimensional reduction.
Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):267008. doi: 10.1103/PhysRevLett.93.267008. Epub 2004 Dec 23.
10
Rounding of first-order phase transitions in systems with quenched disorder.
Phys Rev Lett. 1989 May 22;62(21):2503-2506. doi: 10.1103/PhysRevLett.62.2503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验