Suppr超能文献

基于深度卷积神经网络的糖尿病视网膜病变检测算法的验证 - 人工智能与临床医生用于筛查的比较。

Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening.

机构信息

Department of Vitreoretina and Ocular Oncology, Sankara Eye Hospital, Bengaluru, Karnataka, India.

Lebencare Technologies Pte.Ltd, Singapore.

出版信息

Indian J Ophthalmol. 2020 Feb;68(2):398-405. doi: 10.4103/ijo.IJO_966_19.

Abstract

PURPOSE

Deep learning is a newer and advanced subfield in artificial intelligence (AI). The aim of our study is to validate a machine-based algorithm developed based on deep convolutional neural networks as a tool for screening to detect referable diabetic retinopathy (DR).

METHODS

An AI algorithm to detect DR was validated at our hospital using an internal dataset consisting of 1,533 macula-centered fundus images collected retrospectively and an external validation set using Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal Ophthalmology (MESSIDOR) dataset. Images were graded by two retina specialists as any DR, prompt referral (moderate nonproliferative diabetic retinopathy (NPDR) or above or presence of macular edema) and sight-threatening DR/STDR (severe NPDR or above) and compared with AI results. Sensitivity, specificity, and area under curve (AUC) for both internal and external validation sets for any DR detection, prompt referral, and STDR were calculated. Interobserver agreement using kappa value was calculated for both the sets and two out of three agreements for DR grading was considered as ground truth to compare with AI results.

RESULTS

In the internal validation set, the overall sensitivity and specificity was 99.7% and 98.5% for Any DR detection and 98.9% and 94.84%for Prompt referral respectively. The AUC was 0.991 and 0.969 for any DR detection and prompt referral respectively. The agreement between two observers was 99.5% and 99.2% for any DR detection and prompt referral with a kappa value of 0.94 and 0.96, respectively. In the external validation set (MESSIDOR 1), the overall sensitivity and specificity was 90.4% and 91.0% for any DR detection and 94.7% and 97.4% for prompt referral, respectively. The AUC was. 907 and. 960 for any DR detection and prompt referral, respectively. The agreement between two observers was 98.5% and 97.8% for any DR detection and prompt referral with a kappa value of 0.971 and 0.980, respectively.

CONCLUSION

With increasing diabetic population and growing demand supply gap in trained resources, AI is the future for early identification of DR and reducing blindness. This can revolutionize telescreening in ophthalmology, especially where people do not have access to specialized health care.

摘要

目的

深度学习是人工智能(AI)中一个较新且先进的子领域。我们研究的目的是验证一种基于深度卷积神经网络的机器算法,作为筛查工具,以检测可治疗的糖尿病视网膜病变(DR)。

方法

使用内部数据集(包括 1533 张回顾性黄斑中心的眼底图像)和眼部评估分割和索引技术的方法(MESSIDOR)外部验证集,在我院对用于检测 DR 的 AI 算法进行验证。由两位视网膜专家将图像分级为任何 DR、立即转诊(中度非增生性糖尿病视网膜病变(NPDR)或以上或存在黄斑水肿)和威胁视力的 DR/STDR(严重 NPDR 或以上),并与 AI 结果进行比较。计算内部和外部验证集的任何 DR 检测、立即转诊和 STDR 的敏感性、特异性和曲线下面积(AUC)。使用kappa 值计算两组的观察者间一致性,并将 DR 分级的三分之二协议视为与 AI 结果进行比较的真实情况。

结果

在内部验证集中,对于任何 DR 检测,总体敏感性和特异性分别为 99.7%和 98.5%,对于立即转诊,敏感性和特异性分别为 98.9%和 94.84%。AUC 分别为 0.991 和 0.969。对于任何 DR 检测和立即转诊,两名观察者之间的一致性分别为 99.5%和 99.2%,kappa 值分别为 0.94 和 0.96。在外部验证集(MESSIDOR 1)中,对于任何 DR 检测,敏感性和特异性分别为 90.4%和 91.0%,对于立即转诊,敏感性和特异性分别为 94.7%和 97.4%。AUC 分别为 0.907 和 0.960。对于任何 DR 检测和立即转诊,两名观察者之间的一致性分别为 98.5%和 97.8%,kappa 值分别为 0.971 和 0.980。

结论

随着糖尿病患者人数的增加和受过训练的资源供需差距的扩大,人工智能是早期发现 DR 和减少失明的未来。这可以彻底改变眼科的远程筛查,特别是在人们无法获得专门医疗保健的地方。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb8/7003578/b8c53d717b53/IJO-68-398-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验