Suppr超能文献

开发预测哮喘患者哮喘住院情况的模型:二次分析

Developing a Model to Predict Hospital Encounters for Asthma in Asthmatic Patients: Secondary Analysis.

作者信息

Luo Gang, He Shan, Stone Bryan L, Nkoy Flory L, Johnson Michael D

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States.

Care Transformation, Intermountain Healthcare, Salt Lake City, UT, United States.

出版信息

JMIR Med Inform. 2020 Jan 21;8(1):e16080. doi: 10.2196/16080.

Abstract

BACKGROUND

As a major chronic disease, asthma causes many emergency department (ED) visits and hospitalizations each year. Predictive modeling is a key technology to prospectively identify high-risk asthmatic patients and enroll them in care management for preventive care to reduce future hospital encounters, including inpatient stays and ED visits. However, existing models for predicting hospital encounters in asthmatic patients are inaccurate. Usually, they miss over half of the patients who will incur future hospital encounters and incorrectly classify many others who will not. This makes it difficult to match the limited resources of care management to the patients who will incur future hospital encounters, increasing health care costs and degrading patient outcomes.

OBJECTIVE

The goal of this study was to develop a more accurate model for predicting hospital encounters in asthmatic patients.

METHODS

Secondary analysis of 334,564 data instances from Intermountain Healthcare from 2005 to 2018 was conducted to build a machine learning classification model to predict the hospital encounters for asthma in the following year in asthmatic patients. The patient cohort included all asthmatic patients who resided in Utah or Idaho and visited Intermountain Healthcare facilities during 2005 to 2018. A total of 235 candidate features were considered for model building.

RESULTS

The model achieved an area under the receiver operating characteristic curve of 0.859 (95% CI 0.846-0.871). When the cutoff threshold for conducting binary classification was set at the top 10.00% (1926/19,256) of asthmatic patients with the highest predicted risk, the model reached an accuracy of 90.31% (17,391/19,256; 95% CI 89.86-90.70), a sensitivity of 53.7% (436/812; 95% CI 50.12-57.18), and a specificity of 91.93% (16,955/18,444; 95% CI 91.54-92.31). To steer future research on this topic, we pinpointed several potential improvements to our model.

CONCLUSIONS

Our model improves the state of the art for predicting hospital encounters for asthma in asthmatic patients. After further refinement, the model could be integrated into a decision support tool to guide asthma care management allocation.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/resprot.5039.

摘要

背景

哮喘作为一种主要的慢性疾病,每年导致大量患者前往急诊科就诊和住院。预测建模是一项关键技术,可前瞻性地识别高危哮喘患者,并将他们纳入护理管理以进行预防性护理,从而减少未来的医院就诊次数,包括住院和急诊就诊。然而,现有的预测哮喘患者医院就诊情况的模型并不准确。通常,它们会遗漏超过一半未来会住院的患者,并且错误地将许多不会住院的患者分类为高风险。这使得难以将有限的护理管理资源与未来会住院的患者相匹配,从而增加了医疗成本并降低了患者的治疗效果。

目的

本研究的目的是开发一种更准确的预测哮喘患者医院就诊情况的模型。

方法

对2005年至2018年间山间医疗保健公司的334564个数据实例进行二次分析,以建立一个机器学习分类模型,预测哮喘患者次年的医院就诊情况。患者队列包括所有居住在犹他州或爱达荷州且在2005年至2018年间前往山间医疗保健机构就诊的哮喘患者。在模型构建中总共考虑了235个候选特征。

结果

该模型的受试者工作特征曲线下面积为0.859(95%CI 0.846 - 0.871)。当进行二元分类的截断阈值设定为预测风险最高的前10.00%(1926/19256)的哮喘患者时,该模型的准确率达到90.31%(17391/19256;95%CI 89.86 - 90.70),灵敏度为53.7%(436/812;95%CI 50.12 - 57.18),特异性为91.93%(16955/18444;95%CI 91.54 - 92.31)。为了指导该主题的未来研究,我们指出了对我们模型的几个潜在改进。

结论

我们的模型改进了预测哮喘患者医院就诊情况的现有技术水平。经过进一步完善后,该模型可集成到决策支持工具中,以指导哮喘护理管理资源的分配。

国际注册报告识别号(IRRID):RR2 - 10.2196/resprot.5039。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69de/7001050/7ef9104027f5/medinform_v8i1e16080_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验