Department of Biomedical Engineering , Boston University , Boston , Massachusetts 02215 , United States.
Biological Design Center , Boston University , Boston , Massachusetts 02215 , United States.
ACS Synth Biol. 2020 Feb 21;9(2):227-235. doi: 10.1021/acssynbio.9b00395. Epub 2020 Jan 21.
Optogenetic tools can provide direct and programmable control of gene expression. Light-inducible recombinases, in particular, offer a powerful method for achieving precise spatiotemporal control of DNA modification. However, to-date this technology has been largely limited to eukaryotic systems. Here, we develop optogenetic recombinases for that activate in response to blue light. Our approach uses a split recombinase coupled with photodimers, where blue light brings the split protein together to form a functional recombinase. We tested both Cre and Flp recombinases, Vivid and Magnet photodimers, and alternative protein split sites in our analysis. The optimal configuration, Opto-Cre-Vvd, exhibits strong blue light-responsive excision and low ambient light sensitivity. For this system we characterize the effect of light intensity and the temporal dynamics of light-induced recombination. These tools expand the microbial optogenetic toolbox, offering the potential for precise control of DNA excision with light-inducible recombinases in bacteria.
光遗传学工具可以提供对基因表达的直接和可编程控制。光诱导的重组酶,特别是,为实现 DNA 修饰的精确时空控制提供了一种强大的方法。然而,迄今为止,这项技术在很大程度上仅限于真核系统。在这里,我们开发了对蓝光有响应的光遗传学重组酶。我们的方法使用了一种分裂重组酶与光二聚体相结合,其中蓝光将分裂蛋白聚集在一起形成一个功能重组酶。我们在分析中测试了 Cre 和 Flp 重组酶、Vivid 和 Magnet 光二聚体以及替代的蛋白质分裂位点。最佳配置 Opto-Cre-Vvd 表现出强烈的蓝光响应切除和低环境光敏感性。对于这个系统,我们研究了光强度的影响和光诱导重组的时间动态。这些工具扩展了微生物光遗传学工具包,为在细菌中用光诱导重组酶进行精确的 DNA 切除控制提供了潜力。