Kowalczyk Pawel J, Brown Simon A, Maerkl Tobias, Lu Qiangsheng, Chiu Ching-Kai, Liu Ying, Yang Shengyuan A, Wang Xiaoxiong, Zasada Ilona, Genuzio Francesca, Menteş Tevfik Onur, Locatelli Andrea, Chiang Tai-Chang, Bian Guang
Department of Solid State Physics, Faculty of Physics and Applied Informatics , University of Lodz , 90-236 Lodz , Pomorska 149/153, Poland.
The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences , University of Canterbury , Private Bag 4800 , Christchurch 8140 , New Zealand.
ACS Nano. 2020 Feb 25;14(2):1888-1894. doi: 10.1021/acsnano.9b08136. Epub 2020 Jan 31.
Two-dimensional (2D) Dirac-like electron gases have attracted tremendous research interest ever since the discovery of free-standing graphene. The linear energy dispersion and nontrivial Berry phase play a pivotal role in the electronic, optical, mechanical, and chemical properties of 2D Dirac materials. The known 2D Dirac materials are gapless only within certain approximations, for example, in the absence of spin-orbit coupling (SOC). Here, we report a route to establishing robust Dirac cones in 2D materials with nonsymmorphic crystal lattice. The nonsymmorphic symmetry enforces Dirac-like band dispersions around certain high-symmetry momenta in the presence of SOC. Through μ-ARPES measurements, we observe Dirac-like band dispersions in α-bismuthene. The nonsymmorphic lattice symmetry is confirmed by μ-low-energy electron diffraction and scanning tunneling microscopy. Our first-principles simulations and theoretical topological analysis demonstrate the correspondence between nonsymmorphic symmetry and Dirac states. This mechanism can be straightforwardly generalized to other nonsymmorphic materials. The results enlighten the search of symmetry-enforced Dirac fermions in the vast uncharted world of nonsymmorphic 2D materials.
自独立石墨烯被发现以来,二维(2D)类狄拉克电子气就引起了极大的研究兴趣。线性能量色散和非平凡贝里相位在二维狄拉克材料的电学、光学、力学和化学性质中起着关键作用。已知的二维狄拉克材料仅在某些近似情况下是无隙的,例如,在没有自旋轨道耦合(SOC)的情况下。在此,我们报告了一种在具有非对称晶格的二维材料中建立稳健狄拉克锥的方法。在存在自旋轨道耦合的情况下,非对称对称性在某些高对称动量周围强制产生类狄拉克能带色散。通过μ-角分辨光电子能谱测量,我们在α-铋烯中观察到类狄拉克能带色散。通过μ-低能电子衍射和扫描隧道显微镜证实了非对称晶格对称性。我们的第一性原理模拟和理论拓扑分析证明了非对称对称性与狄拉克态之间的对应关系。这种机制可以直接推广到其他非对称材料。这些结果为在广阔未知的非对称二维材料世界中寻找对称性强制的狄拉克费米子提供了启示。