Suppr超能文献

联合使用既定算法和生物标志物提高附件肿瘤的诊断准确性

Increased Diagnostic Accuracy of Adnexal Tumors with A Combination of Established Algorithms and Biomarkers.

作者信息

Lycke Maria, Ulfenborg Benjamin, Kristjansdottir Björg, Sundfeldt Karin

机构信息

Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg and Region Västra Götaland, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden.

Systems biology research center, School of Bioscience, University of Skövde, 54128 Skövde, Sweden.

出版信息

J Clin Med. 2020 Jan 21;9(2):299. doi: 10.3390/jcm9020299.

Abstract

Ovarian cancer is the most lethal gynecologic cancer. Pre-diagnostic testing lacks sensitivity and specificity, and surgery is often the only way to secure the diagnosis. Exploring new biomarkers is of great importance, but the rationale of combining validated well-established biomarkers and algorithms could be a more effective way forward. We hypothesized that we can improve differential diagnostics and reduce false positives by combining (a) risk of malignancy index (RMI) with serum HE4, (b) risk of ovarian malignancy algorithm (ROMA) with a transvaginal ultrasound score or (c) adding HE4 to CA125 in a simple algorithm. With logistic regression modeling, new algorithms were explored and validated using leave-one-out cross validation. The analyses were performed in an existing cohort prospectively collected prior to surgery, 2013-2016. A total of 445 benign tumors and 135 ovarian cancers were included. All presented models improved specificity at cut-off compared to the original algorithm, and goodness of fit was significant ( < 0.001). Our findings confirm that HE4 is a marker that improves specificity without hampering sensitivity or diagnostic accuracy in adnexal tumors. We provide in this study "easy-to-use" algorithms that could aid in the triage of women to the most appropriate level of care when presenting with an unknown ovarian cyst or suspicious ovarian cancer.

摘要

卵巢癌是最致命的妇科癌症。诊断前检测缺乏敏感性和特异性,手术往往是确诊的唯一方法。探索新的生物标志物非常重要,但将经过验证的成熟生物标志物和算法相结合可能是更有效的前进方向。我们假设,通过将(a)恶性风险指数(RMI)与血清HE4相结合、(b)卵巢恶性风险算法(ROMA)与经阴道超声评分相结合或(c)在一个简单算法中在CA125基础上加入HE4,能够改善鉴别诊断并减少假阳性。通过逻辑回归建模,探索并使用留一法交叉验证对新算法进行了验证。分析在2013年至2016年手术前前瞻性收集的现有队列中进行。共纳入445例良性肿瘤和135例卵巢癌。与原始算法相比,所有呈现的模型在截断值时均提高了特异性,且拟合优度显著(<0.001)。我们的研究结果证实,HE4是一种在附件肿瘤中可提高特异性而不影响敏感性或诊断准确性的标志物。我们在本研究中提供了“易于使用”的算法,可在女性出现不明卵巢囊肿或可疑卵巢癌时,帮助将其分诊到最合适的护理级别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb9/7073859/1045428b4820/jcm-09-00299-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验