Cañas Rafael A, Yesbergenova-Cuny Zhazira, Belanger Léo, Rouster Jacques, Brulé Lenaïg, Gilard Françoise, Quilleré Isabelle, Sallaud Christophe, Hirel Bertrand
Institut Jean-Pierre Bourgin, Institut national de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-AgroParisTech, RD10, 78026 Versailles, Cedex, France.
Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain.
Plants (Basel). 2020 Jan 21;9(2):130. doi: 10.3390/plants9020130.
Maize plants overexpressing NADH-GOGAT were produced in order to determine if boosting 2-Oxoglurate production used as a carbon skeleton for the biosynthesis of amino acids will improve plant biomass and kernel production. The NADH-GOGAT enzyme recycles glutamate and incorporates carbon skeletons into the ammonium assimilation pathway using the organic acid 2-Oxoglutarate as a substrate. Gene pyramiding was then conducted with NAD-IDH and NADH-GDH, two enzymes also involved in the synthesis of 2-Oxoglurate. NADH-GOGAT overexpression was detrimental for shoot biomass production but did not markedly affect kernel yield. Additional NAD-IDH and NADH-GDH activity did not improve plant performance. A decrease in kernel production was observed when NADH-GDH was pyramided to NADH-GOGAT and NAD-IDH. This decrease could not be restored even when additional cytosolic GS activity was present in the plants overexpressing the three enzymes producing 2-Oxoglutarate. Detailed leaf metabolic profiling of the different transgenic plants revealed that the NADH-GOGAT over-expressors were characterized by an accumulation of amino acids derived from glutamate and a decrease in the amount of carbohydrates further used to provide carbon skeletons for its synthesis. The study suggests that 2-Oxoglutarate synthesis is a key element acting at the interface of carbohydrate and amino acid metabolism and that its accumulation induces an imbalance of primary carbon and nitrogen metabolism that is detrimental for maize productivity.
为了确定提高用作氨基酸生物合成碳骨架的2-氧代戊二酸的产量是否会提高植物生物量和籽粒产量,培育了过表达NADH-谷氨酰胺合成酶的玉米植株。NADH-谷氨酰胺合成酶可使谷氨酸循环利用,并以有机酸2-氧代戊二酸为底物将碳骨架纳入铵同化途径。然后将NAD-IDH和NADH-GDH(同样参与2-氧代戊二酸合成的两种酶)进行基因聚合。过表达NADH-谷氨酰胺合成酶对地上部生物量的产生不利,但对籽粒产量没有显著影响。额外的NAD-IDH和NADH-GDH活性并没有改善植株的表现。当将NADH-GDH与NADH-谷氨酰胺合成酶和NAD-IDH进行基因聚合时,观察到籽粒产量下降。即使在过表达产生2-氧代戊二酸的三种酶的植株中存在额外的胞质谷氨酰胺合成酶活性,这种下降也无法恢复。对不同转基因植株进行详细的叶片代谢谱分析表明,过表达NADH-谷氨酰胺合成酶的植株的特征是谷氨酸衍生的氨基酸积累,以及进一步用于为其合成提供碳骨架的碳水化合物量减少。该研究表明,2-氧代戊二酸的合成是碳水化合物和氨基酸代谢界面的关键因素,其积累会导致初级碳氮代谢失衡,对玉米生产力产生不利影响。