Centre for Reproductive Medicine and Andrology, University of Münster, Münster, Germany.
Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands.
Mol Hum Reprod. 2020 Mar 26;26(3):179-192. doi: 10.1093/molehr/gaaa006.
The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.
近年来,男性不育症的显著增加促使人们进行了广泛的研究,以在体外重现精子发生过程,并鉴定精子发生中涉及的关键机制,特别是用于临床应用。一种有前途的技术——器官芯片(OoC)技术,逐渐改变了辅助生殖技术(ART)的研究格局,并为开发先进的体外培养系统提供了新的机会。通过对细胞或组织微环境的精细控制,可以在体外 OoC 平台上制造定制的器官特异性结构,还可以模拟体内血管化的效果。使用微流控设备的动态培养使我们能够创建有刺激和无刺激的培养条件。值得注意的是,最近的研究表明,使用离体小鼠睾丸组织在 OoC 系统中进行连续灌注具有潜力。在这里,我们回顾了现有的文献,并结合新型生物工程和分析工具,讨论了这些 OoC 系统在男性生殖中的潜在应用。我们首先介绍了 OoC 技术,并强调了其在生殖生物学中的普遍机会。在接下来的部分中,我们讨论了睾丸的复杂结构和功能组织,以及血管相关的睾丸小生境和流体动力学在调节睾丸功能中的作用。接下来,我们回顾了在各种物种中实现体外精子发生的重要技术突破,并讨论了基于微流控的睾丸培养研究在小鼠中的证据。最后,我们讨论了拟议的睾丸芯片培养系统在灵长类男性不育、ART 和生殖毒理学领域的潜在应用的路线图。