Suppr超能文献

基于表面肌电信号的紧凑型卷积神经网络手势识别

Hand Gesture Recognition Using Compact CNN Via Surface Electromyography Signals.

机构信息

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400700, China.

School of computer science and technology, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2020 Jan 26;20(3):672. doi: 10.3390/s20030672.

Abstract

By training the deep neural network model, the hidden features in Surface Electromyography(sEMG) signals can be extracted. The motion intention of the human can be predicted by analysis of sEMG. However, the models recently proposed by researchers often have a large number of parameters. Therefore, we designed a compact Convolution Neural Network (CNN) model, which not only improves the classification accuracy but also reduces the number of parameters in the model. Our proposed model was validated on the Ninapro DB5 Dataset and the Myo Dataset. The classification accuracy of gesture recognition achieved good results.

摘要

通过训练深度神经网络模型,可以提取表面肌电信号(sEMG)中的隐藏特征。通过分析 sEMG,可以预测人类的运动意图。然而,研究人员最近提出的模型通常具有大量的参数。因此,我们设计了一个紧凑的卷积神经网络(CNN)模型,不仅提高了分类准确性,而且减少了模型中的参数数量。我们提出的模型在 Ninapro DB5 数据集和 Myo 数据集上进行了验证。手势识别的分类准确性取得了良好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27cb/7039218/a94ee1da3c8d/sensors-20-00672-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验