IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5219-5230. doi: 10.1109/TNNLS.2020.2964799. Epub 2020 Nov 30.
Palmprint recognition has been widely applied in security and, particularly, authentication. In the past decade, various palmprint recognition methods have been proposed and achieved promising recognition performance. However, most of these methods require rich a priori knowledge and cannot adapt well to different palmprint recognition scenarios, including contact-based, contactless, and multispectral palmprint recognition. This problem limits the application and popularization of palmprint recognition. In this article, motivated by the least square regression, we propose a salient and discriminative descriptor learning method (SDDLM) for general scenario palmprint recognition. Different from the conventional palmprint feature extraction methods, the SDDLM jointly learns noise and salient information from the pixels of palmprint images, simultaneously. The learned noise enforces the projection matrix to learn salient and discriminative features from each palmprint sample. Thus, the SDDLM can be adaptive to multiscenarios. Experiments were conducted on the IITD, CASIA, GPDS, PolyU near infrared (NIR), noisy IITD, and noisy GPDS palmprint databases, and palm vein and dorsal hand vein databases. It can be seen from the experimental results that the proposed SDDLM consistently outperformed the classical palmprint recognition methods and state-of-the-art methods for palmprint recognition.
掌纹识别在安全领域得到了广泛应用,特别是在身份验证方面。在过去的十年中,已经提出了各种掌纹识别方法,并取得了有希望的识别性能。然而,这些方法中的大多数都需要丰富的先验知识,并且不能很好地适应不同的掌纹识别场景,包括基于接触的、非接触的和多光谱掌纹识别。这个问题限制了掌纹识别的应用和普及。在本文中,受最小二乘回归的启发,我们提出了一种用于通用场景掌纹识别的显著且有鉴别力的描述符学习方法(SDDLM)。与传统的掌纹特征提取方法不同,SDDLM 同时从掌纹图像的像素中联合学习噪声和显著信息。所学习的噪声强制投影矩阵从每个掌纹样本中学习显著且有鉴别力的特征。因此,SDDLM 可以适应多场景。在 IITD、CASIA、GPDS、PolyU 近红外(NIR)、嘈杂 IITD 和嘈杂 GPDS 掌纹数据库以及掌静脉和手背静脉数据库上进行了实验。从实验结果可以看出,所提出的 SDDLM 在掌纹识别方面始终优于经典的掌纹识别方法和最先进的方法。