Suppr超能文献

AMLVaran:一种在肿瘤护理环境中对靶向NGS测序数据进行变异分析的软件方法。

AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting.

作者信息

Wünsch Christian, Banck Henrik, Müller-Tidow Carsten, Dugas Martin

机构信息

Institute for Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, Building A11, Münster, Germany.

Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany.

出版信息

BMC Med Genomics. 2020 Feb 4;13(1):17. doi: 10.1186/s12920-020-0668-3.

Abstract

BACKGROUND

Next-Generation Sequencing (NGS) enables large-scale and cost-effective sequencing of genetic samples in order to detect genetic variants. After successful use in research-oriented projects, NGS is now entering clinical practice. Consequently, variant analysis is increasingly important to facilitate a better understanding of disease entities and prognoses. Furthermore, variant calling allows to adapt and optimize specific treatments of individual patients, and thus is an integral part of personalized medicine.However, the analysis of NGS data typically requires a number of complex bioinformatics processing steps. A flexible and reliable software that combines the variant analysis process with a simple, user-friendly interface is therefore highly desirable, but still lacking.

RESULTS

With AMLVaran (AML Variant Analyzer), we present a web-based software, that covers the complete variant analysis workflow of targeted NGS samples. The software provides a generic pipeline that allows free choice of variant calling tools and a flexible language (SSDL) for filtering variant lists. AMLVaran's interactive website presents comprehensive annotation data and includes curated information on relevant hotspot regions and driver mutations. A concise clinical report with rule-based diagnostic recommendations is generated.An AMLVaran configuration with eight variant calling tools and a complex scoring scheme, based on the somatic variant calling pipeline appreci8, was used to analyze three datasets from AML and MDS studies with 402 samples in total. Maximum sensitivity and positive predictive values were 1.0 and 0.96, respectively. The tool's usability was found to be satisfactory by medical professionals.

CONCLUSION

Coverage analysis, reproducible variant filtering and software usability are important for clinical assessment of variants. AMLVaran performs reliable NGS variant analyses and generates reports fulfilling the requirements of a clinical setting. Due to its generic design, the software can easily be adapted for use with different targeted panels for other tumor entities, or even for whole-exome data. AMLVaran has been deployed to a public web server and is distributed with Docker scripts for local use.

摘要

背景

新一代测序(NGS)能够对基因样本进行大规模且经济高效的测序,以检测基因变异。在成功应用于面向研究的项目后,NGS如今正进入临床实践。因此,变异分析对于更好地理解疾病实体和预后变得愈发重要。此外,变异检测有助于调整和优化个体患者的特定治疗方案,从而成为个性化医疗不可或缺的一部分。然而,NGS数据分析通常需要一系列复杂的生物信息学处理步骤。因此,非常需要一款灵活可靠的软件,它能将变异分析过程与简单、用户友好的界面相结合,但目前仍很缺乏。

结果

借助AMLVaran(急性髓系白血病变异分析仪),我们推出了一款基于网络的软件,它涵盖了靶向NGS样本的完整变异分析工作流程。该软件提供了一个通用管道,允许自由选择变异检测工具,并使用一种灵活的语言(SSDL)来筛选变异列表。AMLVaran的交互式网站展示了全面的注释数据,并包含有关相关热点区域和驱动突变的整理信息。生成了一份带有基于规则的诊断建议的简明临床报告。基于体细胞变异检测管道appreci8,使用了一个配备八个变异检测工具和复杂评分方案的AMLVaran配置,来分析来自急性髓系白血病和骨髓增生异常综合征研究的三个数据集,总共402个样本。最大灵敏度和阳性预测值分别为1.0和0.96。医学专业人员认为该工具的可用性令人满意。

结论

覆盖分析、可重复的变异筛选和软件可用性对于变异的临床评估很重要。AMLVaran能够进行可靠的NGS变异分析,并生成满足临床环境要求的报告。由于其通用设计,该软件可以轻松适配用于其他肿瘤实体的不同靶向面板,甚至全外显子数据。AMLVaran已部署到公共网络服务器,并随附Docker脚本以供本地使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dc8/7001226/19a82c05fe32/12920_2020_668_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验