Klein Emilie, Bock Yehuda, Xu Xiaohua, Sandwell David T, Golriz Dorian, Fang Peng, Su Lina
Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography University of California San Diego, La Jolla CA USA.
Now at Laboratoire de géologie, Département de Géosciences ENS, CNRS, UMR 8538, PSL Research University Paris France.
J Geophys Res Solid Earth. 2019 Nov;124(11):12189-12223. doi: 10.1029/2018JB017201. Epub 2019 Nov 22.
Our understanding of plate boundary deformation has been enhanced by transient signals observed against the backdrop of time-independent secular motions. We make use of a new analysis of displacement time series from about 1,000 continuous Global Positioning System (GPS) stations in California from 1999 to 2018 to distinguish tectonic and nontectonic transients from secular motion. A primary objective is to define a high-resolution three-dimensional reference frame (datum) for California that can be rapidly maintained with geodetic data to accommodate both secular and time-dependent motions. To this end, we compare the displacements to those predicted by a horizontal secular fault slip model for the region and construct displacement and strain rate fields. Over the past 19 years, California has experienced 19 geodetically detectable earthquakes and widespread postseismic deformation. We observe postseismic strain rate variations as large as 1,000 nstrain/year with moment releases equivalent up to an Mw6.8 earthquake. We find significant secular differences up to 10 mm/year with the fault slip model, from the Mendocino Triple Junction to the southern Cascadia subduction zone, the northern Basin and Range, and the Santa Barbara channel. Secular vertical uplift is observed across the Transverse Ranges, Coastal Ranges, Sierra Nevada, as well as large-scale postseismic uplift after the 1999 Mw7.1 Hector Mine and 2010 Mw7.2 El Mayor-Cucapah earthquakes. We also identify areas of vertical land motions due to anthropogenic, natural, and magmatic processes. Finally, we demonstrate the utility of the kinematic datum by improving the accuracy of high-spatial-resolution 12-day repeat-cycle Sentinel-1 Interferometric Synthetic Aperture Radar displacement and velocity maps.
在与时间无关的长期运动背景下观测到的瞬态信号,增强了我们对板块边界变形的理解。我们利用对1999年至2018年加利福尼亚州约1000个连续全球定位系统(GPS)站位移时间序列的新分析,以区分长期运动中的构造和非构造瞬态。一个主要目标是为加利福尼亚定义一个高分辨率三维参考框架(基准),该框架可以通过大地测量数据快速维护,以适应长期和随时间变化的运动。为此,我们将位移与该地区水平长期断层滑动模型预测的位移进行比较,并构建位移和应变率场。在过去19年中,加利福尼亚经历了19次大地可探测地震和广泛的震后变形。我们观测到震后应变率变化高达1000 nstrain/年,矩释放量相当于Mw6.8级地震。我们发现,从门多西诺三联点到卡斯卡迪亚俯冲带南部、北盆地和山脉以及圣巴巴拉海峡,与断层滑动模型存在高达10毫米/年的显著长期差异。在横向山脉、海岸山脉、内华达山脉以及1999年Mw7.1赫克托矿地震和2010年Mw7.2埃尔市长-库卡帕地震后的大规模震后隆升中,观测到了长期垂直隆升。我们还确定了由于人为、自然和岩浆过程导致的垂直陆地运动区域。最后,我们通过提高高空间分辨率12天重复周期哨兵-1干涉合成孔径雷达位移和速度图的精度,证明了运动基准的实用性。