Lorenzo Damaris N
Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
Cytoskeleton (Hoboken). 2020 Mar;77(3-4):129-148. doi: 10.1002/cm.21602. Epub 2020 Feb 14.
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
神经元高度极化、通常非常长且不进行有丝分裂的特性,使其在维持自身稳态方面面临独特挑战。这种结构复杂性服务于一系列丰富且受到严格控制的功能,使其能够与相邻细胞快速通信,并赋予它们精妙的可塑性。神经元膜下细胞骨架在协调决定局部和远距离亚细胞特化、膜动力学以及广泛信号事件的结构模式中占据关键位置。其核心是锚蛋白和血影蛋白之间的协作关系,它们以显著的长程规则性以及微米和纳米尺度的特异性进行自我组装,从而精确地定位和稳定细胞黏附分子、膜转运蛋白、离子通道及其他细胞骨架蛋白。为了完成这些通常保守但功能上往往存在差异且空间分布多样的任务,这些协作伙伴利用了由几十种相互作用的家族成员组成的组合程序,其编码尚未完全解开。与它们的支架作用不同,锚蛋白和血影蛋白还通过促进细胞内运输,实现物质向质膜的递送。因此,毫不奇怪,锚蛋白和血影蛋白的缺陷是多种神经发育、神经退行性和精神疾病的基础。在此,我总结了哺乳动物神经元中血影蛋白和锚蛋白生物学的关键方面,并简要介绍了在解读它们在神经系统中作用方面的最新进展。