Suppr超能文献

结合机器学习与代谢组学以识别体重增加生物标志物。

Combining Machine Learning and Metabolomics to Identify Weight Gain Biomarkers.

作者信息

Dias-Audibert Flávia Luísa, Navarro Luiz Claudio, de Oliveira Diogo Noin, Delafiori Jeany, Melo Carlos Fernando Odir Rodrigues, Guerreiro Tatiane Melina, Rosa Flávia Troncon, Petenuci Diego Lima, Watanabe Maria Angelica Ehara, Velloso Licio Augusto, Rocha Anderson Rezende, Catharino Rodrigo Ramos

机构信息

Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.

RECOD Laboratory, Institute of Computing (IC), University of Campinas, Campinas, Brazil.

出版信息

Front Bioeng Biotechnol. 2020 Jan 24;8:6. doi: 10.3389/fbioe.2020.00006. eCollection 2020.

Abstract

Weight gain is a metabolic disorder that often culminates in the development of obesity and other comorbidities such as diabetes. Obesity is characterized by the development of a chronic, subclinical systemic inflammation, and is regarded as a remarkably important factor that contributes to the development of such comorbidities. Therefore, laboratory methods that allow the identification of subjects at higher risk for severe weight-associated morbidity are of utter importance, considering the health, and safety of populations. This contribution analyzed the plasma of 180 Brazilian individuals, equally divided into a eutrophic control group and case group, to assess the presence of biomarkers related to weight gain, aiming at characterizing the phenotype of this population. Samples were analyzed by mass spectrometry and most discriminant features were determined by a machine learning approach using Random Forest algorithm. Five biomarkers related to the pathogenesis and chronicity of inflammation in weight gain were identified. Two metabolites of arachidonic acid were upregulated in the case group, indicating the presence of inflammation, as well as two other molecules related to dysfunctions in the cycle of nitric oxide (NO) and increase in superoxide production. Finally, a fifth case group marker observed in this study may indicate the trigger for diabetes in overweight and obesity individuals. The use of mass spectrometry combined with machine learning analyses to prospect and characterize biomarkers associated with weight gain will pave the way for elucidating potential therapeutic and prognostic targets.

摘要

体重增加是一种代谢紊乱,常常最终导致肥胖及其他合并症如糖尿病的发生。肥胖的特征是慢性、亚临床全身炎症的发展,并且被视为导致此类合并症发生的一个非常重要的因素。因此,考虑到人群的健康和安全,能够识别出严重体重相关发病风险较高的受试者的实验室方法至关重要。本研究分析了180名巴西人的血浆,这些人平均分为一个营养正常对照组和病例组,以评估与体重增加相关的生物标志物的存在情况,旨在对该人群的表型进行特征描述。通过质谱对样本进行分析,并使用随机森林算法通过机器学习方法确定最具判别力的特征。确定了与体重增加中炎症的发病机制和慢性化相关的五种生物标志物。病例组中花生四烯酸的两种代谢产物上调,表明存在炎症,还有另外两种与一氧化氮(NO)循环功能障碍和超氧化物产生增加相关的分子。最后,本研究中观察到的病例组的第五种标志物可能表明超重和肥胖个体中糖尿病的触发因素。使用质谱结合机器学习分析来探寻和表征与体重增加相关的生物标志物将为阐明潜在的治疗和预后靶点铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8865/6993102/7f7fc4b627f6/fbioe-08-00006-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验