Suppr超能文献

超小纳米晶体中的室温缺陷量子比特

Room-Temperature Defect Qubits in Ultrasmall Nanocrystals.

作者信息

Beke Dávid, Valenta Jan, Károlyházy Gyula, Lenk Sándor, Czigány Zsolt, Márkus Bence Gábor, Kamarás Katalin, Simon Ferenc, Gali Adam

机构信息

Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO. Box 49, Budapest H-1525, Hungary.

Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest H-1111, Hungary.

出版信息

J Phys Chem Lett. 2020 Mar 5;11(5):1675-1681. doi: 10.1021/acs.jpclett.0c00052. Epub 2020 Feb 14.

Abstract

There is an urgent quest for room-temperature qubits in nanometer-sized, ultrasmall nanocrystals for quantum biosensing, hyperpolarization of biomolecules, and quantum information processing. Thus far, the preparation of such qubits at the nanoscale has remained futile. Here, we present a synthesis method that avoids any interaction of the solid with high-energy particles and uses self-propagated high-temperature synthesis with a subsequent electrochemical method, the no-photon exciton generation chemistry to produce room-temperature qubits in ultrasmall nanocrystals of sizes down to 3 nm with high yield. We first create the host silicon carbide (SiC) crystallites by high-temperature synthesis and then apply wet chemical etching, which results in ultrasmall SiC nanocrystals and facilitates the creation of thermally stable defect qubits in the material. We demonstrate room-temperature optically detected magnetic resonance signal of divacancy qubits with 3.5% contrast from these nanoparticles with emission wavelengths falling in the second biological window (1000-1380 nm). These results constitute the formation of nonperturbative bioagents for quantum sensing and efficient hyperpolarization.

摘要

人们迫切需要在纳米尺寸的超小纳米晶体中实现室温量子比特,用于量子生物传感、生物分子的超极化以及量子信息处理。到目前为止,在纳米尺度制备此类量子比特仍然没有成功。在此,我们提出一种合成方法,该方法避免了固体与高能粒子的任何相互作用,并采用自蔓延高温合成法以及后续的电化学方法,即无光子激子产生化学法,以高产率在尺寸小至3 nm的超小纳米晶体中制备室温量子比特。我们首先通过高温合成制备主体碳化硅(SiC)微晶,然后进行湿化学蚀刻,这会产生超小的SiC纳米晶体,并有助于在材料中创建热稳定的缺陷量子比特。我们展示了来自这些纳米颗粒的双空位量子比特的室温光学检测磁共振信号,对比度为3.5%,发射波长落在第二生物窗口(1000 - 1380 nm)内。这些结果构成了用于量子传感和高效超极化的非微扰生物制剂的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3518/7307950/8f19f35801e3/jz0c00052_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验