Suppr超能文献

渗透压浓度控制的粒子摄取和包裹诱导的细胞和囊泡的裂解。

Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles.

机构信息

Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.

Mechanobiology Institute, National University of Singapore, 11899, Singapore.

出版信息

Nano Lett. 2020 Mar 11;20(3):1662-1668. doi: 10.1021/acs.nanolett.9b04788. Epub 2020 Feb 17.

Abstract

In vivo, high protein and ion concentrations determine the preferred volumes of cells, organelles, and vesicles. Deformations of their lipid-bilayer membranes by nanoparticle wrapping reduce the interior volumes available to solutes and thus induce large osmotic pressure differences. Osmotic concentration can therefore be an important control parameter for wrapping of nanoparticles. We employ a curvature-elasticity model of the membrane and contact interaction with spherical particles to study their wrapping at initially spherical vesicles. Although the continuous particle-binding transition is independent of the presence of solutes, the discontinuous envelopment transition shifts to higher adhesion strengths and the corresponding energy barrier increases with increasing osmotic concentration. High osmotic concentrations stabilize partial-wrapped, membrane-bound states for both, particle attachment to the inside and the outside. In this regime, wrapping of particles controls membrane tension, with power-law dependencies on osmotic concentration and adhesion strength. For high adhesion strengths, particle wrapping can lead to the opening of mechanosensitive channels in cell membranes and to lysis. Membrane tension-induced stabilization of partial-wrapped states as well as wrapping-induced lysis play important roles not only for desired mechano-bacteriocidal effects of engineered nanomaterials but may also determine viral burst sizes of bacteria and control endocytosis for mammalian cells.

摘要

在体内,高浓度的蛋白质和离子决定了细胞、细胞器和小泡的优选体积。纳米粒子包裹会使它们的双层脂膜变形,从而减少溶质的可用内部体积,因此会产生较大的渗透压差异。因此,渗透压可以成为控制纳米粒子包裹的重要参数。我们采用膜的曲率弹性模型和与球形粒子的接触相互作用来研究初始呈球形的小泡的包裹情况。尽管连续的粒子结合转变与溶质的存在无关,但不连续的包裹转变会转移到更高的粘附强度,相应的能量势垒会随着渗透压的增加而增加。高渗透压会稳定部分包裹的、膜结合的状态,无论是粒子附着在内侧还是外侧。在这个区域,粒子的包裹控制着膜张力,其对渗透压和粘附强度具有幂律依赖性。对于高粘附强度,粒子的包裹会导致细胞膜中机械敏感性通道的打开,并导致裂解。膜张力诱导的部分包裹状态的稳定以及包裹诱导的裂解不仅对工程纳米材料的所需机械杀菌效果很重要,还可能决定细菌的病毒爆发大小,并控制哺乳动物细胞的内吞作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验