Suppr超能文献

语言异常作为精神分裂症的生物标志物。

Anomalies in language as a biomarker for schizophrenia.

机构信息

University of Groningen, University Medical Center Groningen, department of Neuroscience and department of Psychiatry, Groningen, the Netherlands.

Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.

出版信息

Curr Opin Psychiatry. 2020 May;33(3):212-218. doi: 10.1097/YCO.0000000000000595.

Abstract

PURPOSE OF REVIEW

After more than a century of neuroscience research, reproducible, clinically relevant biomarkers for schizophrenia have not yet been established. This article reviews current advances in evaluating the use of language as a diagnostic or prognostic tool in schizophrenia.

RECENT FINDINGS

The development of computational linguistic tools to quantify language disturbances is rapidly gaining ground in the field of schizophrenia research. Current applications are the use of semantic space models and acoustic analyses focused on phonetic markers. These features are used in machine learning models to distinguish patients with schizophrenia from healthy controls or to predict conversion to psychosis in high-risk groups, reaching accuracy scores (generally ranging from 80 to 90%) that exceed clinical raters. Other potential applications for a language biomarker in schizophrenia are monitoring of side effects, differential diagnostics and relapse prevention.

SUMMARY

Language disturbances are a key feature of schizophrenia. Although in its early stages, the emerging field of research focused on computational linguistics suggests an important role for language analyses in the diagnosis and prognosis of schizophrenia. Spoken language as a biomarker for schizophrenia has important advantages because it can be objectively and reproducibly quantified. Furthermore, language analyses are low-cost, time efficient and noninvasive in nature.

摘要

目的综述

经过一个多世纪的神经科学研究,尚未建立可重复的、与临床相关的精神分裂症生物标志物。本文综述了当前评估语言作为精神分裂症诊断或预后工具的应用进展。

最近的发现

用于量化语言障碍的计算语言学工具在精神分裂症研究领域迅速发展。目前的应用是使用语义空间模型和专注于语音标记的声学分析。这些特征用于机器学习模型,以区分精神分裂症患者与健康对照者,或预测高风险人群向精神病的转变,达到准确率(通常在 80%至 90%之间)超过临床评分者。语言生物标志物在精神分裂症中的其他潜在应用包括监测副作用、鉴别诊断和预防复发。

总结

语言障碍是精神分裂症的一个关键特征。尽管处于早期阶段,但专注于计算语言学的新兴研究领域表明,语言分析在精神分裂症的诊断和预后中有重要作用。言语作为精神分裂症的生物标志物有重要优势,因为它可以客观和可重复地进行量化。此外,语言分析本质上是低成本、高效和非侵入性的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验