Suppr超能文献

对称函数在卷积神经网络中对大化学空间的应用。

Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.

机构信息

Department of Chemistry, University of South Dakota, 57069 Vermillion, South Dakota, United States.

出版信息

J Chem Inf Model. 2020 Apr 27;60(4):1928-1935. doi: 10.1021/acs.jcim.9b00835. Epub 2020 Mar 16.

Abstract

The use of machine learning in chemistry is on the rise for the prediction of chemical properties. The input feature representation or descriptor in these applications is an important factor that affects the accuracy as well as the extent of the explored chemical space. Here, we present the periodic table tensor descriptor that combines features from Behler-Parrinello's symmetry functions and a periodic table representation. Using our descriptor and a convolutional neural network model, we achieved 2.2 kcal/mol and 94 meV/atom mean absolute error for the prediction of the atomization energy of organic molecules in the QM9 data set and the formation energy of materials from Materials Project data set, respectively. We also show that structures optimized with a force field derived from this modelcan be used as input to predict the atomization energies of molecules at density functional theory level. Our approach extends the application of Behler-Parrinello's symmetry functions without a limitation on the number of elements, which is highly promising for universal property calculators in large chemical spaces.

摘要

机器学习在化学领域的应用日益增多,可用于预测化学性质。在这些应用中,输入特征表示或描述符是一个重要因素,它会影响预测的准确性和所探索的化学空间的范围。在这里,我们提出了周期表张量描述符,它结合了 Behler-Parrinello 对称函数和周期表表示的特征。使用我们的描述符和卷积神经网络模型,我们分别实现了有机分子的 QM9 数据集的原子化能和材料项目数据集的材料形成能的预测的 2.2 kcal/mol 和 94 meV/atom 的平均绝对误差。我们还表明,使用该模型得出的力场优化的结构可以用作输入,以预测分子在密度泛函理论水平上的原子化能。我们的方法扩展了 Behler-Parrinello 对称函数的应用,而不受元素数量的限制,这对大型化学空间中的通用物性计算器极具前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验