Suppr超能文献

揭示间隙碘的氧化态和氧钝化对CHNHPbI钙钛矿中电荷俘获和复合的影响:一项时域研究。

Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CHNHPbI perovskite: a time-domain study.

作者信息

He Jinlu, Fang Wei-Hai, Long Run

机构信息

College of Chemistry , Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China . Email:

出版信息

Chem Sci. 2019 Sep 9;10(43):10079-10088. doi: 10.1039/c9sc02353d. eCollection 2019 Nov 21.

Abstract

Understanding nonradiative charge recombination mechanisms is a prerequisite for advancing perovskite solar cells. By performing time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics simulations, we show that electron-hole recombination in perovskites strongly depends on the oxidation state of interstitial iodine and oxygen passivation. The simulations demonstrate that electron-hole recombination in CHNHPbI occurs within several nanoseconds, agreeing well with experiment. The negative interstitial iodine delays charge recombination by a factor of 1.3. The deceleration is attributed to the fact that interstitial iodine anion forms a chemical bond with its nearest lead atoms, eliminates the trap state, and decreases the NA electron-phonon coupling. The positive interstitial iodine attracts its neighbouring lattice iodine anions, resulting in the formation of an I-trimer and producing an electron trap. Electron trapping proceeds on a very fast timescale, tens of picoseconds, and captures the majority of free electrons available to directly recombine with free holes while inhibiting the recombination of free electrons and holes, delaying the recombination by a factor of 1.5. However, the positive interstitial iodine easily converts to a neutral iodine defect by capturing an electron, giving rise to a singly occupied state above the valence band maximum and acting as a hole trap. The photoexcitation valence band hole becomes trapped by the hole trap state very rapidly, followed by acceleration of recombination with the conduction band free electron by a factor of 1.6. Surprisingly, molecular oxygen interacting with interstitial iodine anion forms a stable IO species, which inhibits ion migration, stabilizes perovskites, and suppresses the electron-hole recombination by a factor of 2.7. Our simulations reveal the microscopic effects of the oxidation state of interstitial iodine defects and oxygen passivation in perovskites, suggesting an effective way to improve perovskite photovoltaic and optoelectronic devices.

摘要

理解非辐射电荷复合机制是推进钙钛矿太阳能电池发展的前提条件。通过结合时域密度泛函理论与非绝热(NA)分子动力学模拟,我们表明钙钛矿中的电子 - 空穴复合强烈依赖于间隙碘的氧化态和氧钝化。模拟结果表明,CHNHPbI中的电子 - 空穴复合在几纳秒内发生,与实验结果吻合良好。负间隙碘将电荷复合延迟了1.3倍。这种减速归因于间隙碘阴离子与其最近的铅原子形成化学键,消除了陷阱态,并降低了NA电子 - 声子耦合。正间隙碘吸引其相邻的晶格碘阴离子,导致形成I - 三聚体并产生电子陷阱。电子俘获在非常快的时间尺度上进行,几十皮秒,并捕获了大部分可直接与自由空穴复合的自由电子,同时抑制了自由电子和空穴的复合,将复合延迟了1.5倍。然而,正间隙碘很容易通过捕获一个电子转化为中性碘缺陷,在价带最大值上方产生一个单占据态并作为空穴陷阱。光激发价带空穴很快被空穴陷阱态捕获,随后与导带自由电子的复合加速了1.6倍。令人惊讶的是,与间隙碘阴离子相互作用的分子氧形成了稳定的IO 物种,它抑制离子迁移,稳定钙钛矿,并将电子 - 空穴复合抑制了2.7倍。我们的模拟揭示了钙钛矿中间隙碘缺陷的氧化态和氧钝化的微观效应,为改进钙钛矿光伏和光电器件提供了一种有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a6/6991187/8c51995b4123/c9sc02353d-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验