Suppr超能文献

从常规收集的行政数据中推导被动监测卒中严重程度指标:PaSSV指标。

Deriving a Passive Surveillance Stroke Severity Indicator From Routinely Collected Administrative Data: The PaSSV Indicator.

作者信息

Yu Amy Y X, Austin Peter C, Rashid Mohammed, Fang Jiming, Porter Joan, Hill Michael D, Kapral Moira K

机构信息

Department of Medicine (Neurology), University of Toronto, Sunnybrook Health Sciences Centre, ON, Canada (A.Y.X.Y.).

ICES, Toronto, ON, Canada (A.Y.X.Y., P.C.A., M.R., J.F., J.P., M.K.K.).

出版信息

Circ Cardiovasc Qual Outcomes. 2020 Feb;13(2):e006269. doi: 10.1161/CIRCOUTCOMES.119.006269. Epub 2020 Feb 14.

Abstract

BACKGROUND

Adjusting for stroke severity is crucial for stroke outcomes research. However, this information is not available in administrative healthcare data. We aimed to derive an indicator of baseline stroke severity using these data.

METHODS AND RESULTS

We identified patients with stroke enrolled in a population-based registry in Ontario, Canada, and used the Canadian Neurological Scale (CNS), documented in the registry, as a measure of stroke severity. We derived an estimated CNS from a linear regression model in which we regressed the observed CNS on predictor variables: age, sex, arrival by ambulance, interhospital transfer, mechanical ventilation, and an emergency department triage score. The effect of stroke severity on the estimated hazard ratios for 30-day mortality was determined in 3 Cox-proportional hazards models with (1) no CNS, (2) observed CNS, and (3) estimated CNS, all adjusted for age, sex, Charlson index, and stroke type. We assessed model discrimination using C statistics. To assess for construct validity, we repeated these analyses in a subset of patients with documented National Institute of Health Stroke Scale and in a cohort of patients with stroke external to the registry. We derived the estimated stroke severity in 41 481 patients (48.7% female, median age of 75 years [interquartile range, 64- 83]). The magnitude of the association between stroke severity and mortality was similar for the observed and estimated CNS. The discriminative ability of the Cox-proportional hazards models to predict mortality was highest when the observed CNS was included (C statistic, 0.82 [95% CI, 0.81-0.82]), moderate with estimated CNS (0.76 [0.75-0.76]), and lowest without CNS (0.69 [0.69-0.70]. Our findings were replicated with the National Institute of Health Stroke Scale and in the external cohort.

CONCLUSIONS

We derived an estimated measure of stroke severity using administrative data. This can be applied for risk adjustment in population-based stroke outcomes research and in assessments of health system performance.

摘要

背景

在卒中结局研究中,对卒中严重程度进行校正至关重要。然而,行政医疗保健数据中并无此类信息。我们旨在利用这些数据得出一个基线卒中严重程度指标。

方法与结果

我们在加拿大安大略省一个基于人群的登记处中识别出卒中患者,并将登记处记录的加拿大神经学量表(CNS)用作卒中严重程度的衡量指标。我们通过线性回归模型得出一个估计的CNS,在该模型中,我们将观察到的CNS对预测变量进行回归分析,这些预测变量包括:年龄、性别、救护车送达、院间转运、机械通气以及急诊科分诊评分。在3个Cox比例风险模型中确定卒中严重程度对30天死亡率估计风险比的影响,这3个模型分别为:(1)不纳入CNS;(2)纳入观察到的CNS;(3)纳入估计的CNS,所有模型均对年龄、性别、查尔森指数和卒中类型进行了校正。我们使用C统计量评估模型的区分能力。为评估结构效度,我们在一部分记录了美国国立卫生研究院卒中量表的患者以及登记处以外的一组卒中患者中重复了这些分析。我们得出了41481例患者(48.7%为女性,中位年龄75岁[四分位间距,64 - 83岁])的估计卒中严重程度。观察到的CNS和估计的CNS在卒中严重程度与死亡率之间的关联强度相似。当纳入观察到的CNS时,Cox比例风险模型预测死亡率的区分能力最高(C统计量,0.82[95%CI,0.81 - 0.82]),纳入估计的CNS时为中等(0.76[0.75 - 0.76]),不纳入CNS时最低(0.69[0.69 - 0.70])。我们的研究结果在使用美国国立卫生研究院卒中量表的患者以及外部队列中得到了重复验证。

结论

我们利用行政数据得出了一个估计的卒中严重程度指标。这可应用于基于人群的卒中结局研究中的风险校正以及卫生系统绩效评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验