Oncology Department, Xiangya Hospital Central South University, Changsha, People's Republic of China.
Oncology Department, Xiangya Hospital Central South University, Changsha, People's Republic of China.
Phys Med. 2020 Mar;71:62-70. doi: 10.1016/j.ejmp.2020.01.024. Epub 2020 Feb 21.
To present a formalism to improve the accuracy of converting absorbed dose to medium in medium (D) to absorbed dose to water in medium (D) in small megavoltage photon fields for different human tissues in D-based treatment planning systems (TPS).
Eight kinds of real human tissues were simulated to convert D to D. Four kinds of virtual water media were deliberately designed to analyze source of deviations from the conventional Bragg-Gray theory. Mass electronic stopping powers were calculated using the ESTAR code. The phase-space data was generated by the EGSnrc/BEAMnrc Monte Carlo code. The dose deposition was calculated with the EGSnrc/DOSRZnrc code. Electron fluence spectra calculated with EGSnrc/FLURZnrc code were utilized to analyze fluence perturbations and determine fluence intensity (Φ) and fluence spectral shape (Φ) correction factors.
Large conversion errors of D using Bragg-Gray theory were observed, such as 19.65% ± 9.58% (average value ± standard deviation, type A) for inflated lung (ICRU). Fluence perturbations could be exacerbated by severe charged particle disequilibrium conditions. These deviations were caused by the synergy between tissues' different mean excitation energies and smaller mass densities compared to those of water. Adding Φ and Φ correction factors to modify Bragg-Gray theory could greatly reduce D conversion errors, within 1.00% for all tissues studied.
The current clinically used D conversion algorithm in commercial D-based TPS isn't appropriate for some human tissues in small field dosimetry. Correction factors should be exploited to improve the accuracy.
提出一种形式化方法,以提高在 D 基治疗计划系统(TPS)中,将介质中的吸收剂量(D)转换为介质中的水吸收剂量(D)的准确性,用于小兆伏光子场中的不同人体组织。
模拟了 8 种真实人体组织,以将 D 转换为 D。故意设计了 4 种虚拟水介质,以分析偏离传统布拉格-格雷理论的偏差源。使用 ESTAR 代码计算质量电子阻止本领。通过 EGSnrc/BEAMnrc 蒙特卡罗代码生成相空间数据。使用 EGSnrc/DOSRZnrc 代码计算剂量沉积。利用 EGSnrc/FLURZnrc 代码计算的电子通量谱,分析通量扰动,并确定通量强度(Φ)和通量谱形状(Φ)修正因子。
使用布拉格-格雷理论观察到 D 的较大转换误差,例如膨胀肺(ICRU)的 19.65%±9.58%(平均值±标准差,A 型)。严重的带电粒子不平衡条件可能会加剧通量扰动。这些偏差是由组织的不同平均激发能以及与水相比较小的质量密度与布拉格-格雷理论之间的协同作用引起的。通过添加Φ和Φ修正因子来修正布拉格-格雷理论,可以大大降低 D 的转换误差,对于所有研究的组织,误差都在 1.00%以内。
目前商业 D 基 TPS 中使用的临床 D 转换算法不适合小场剂量学中的某些人体组织。应利用修正因子来提高准确性。