Campanaro Stefano, Treu Laura, Rodriguez-R Luis M, Kovalovszki Adam, Ziels Ryan M, Maus Irena, Zhu Xinyu, Kougias Panagiotis G, Basile Arianna, Luo Gang, Schlüter Andreas, Konstantinidis Konstantinos T, Angelidaki Irini
1Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
3CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy.
Biotechnol Biofuels. 2020 Feb 24;13:25. doi: 10.1186/s13068-020-01679-y. eCollection 2020.
Microorganisms in biogas reactors are essential for degradation of organic matter and methane production. However, a comprehensive genome-centric comparison, including relevant metadata for each sample, is still needed to identify the globally distributed biogas community members and serve as a reliable repository.
Here, 134 publicly available metagenomes derived from different biogas reactors were used to recover 1635 metagenome-assembled genomes (MAGs) representing different biogas bacterial and archaeal species. All genomes were estimated to be > 50% complete and nearly half ≥ 90% complete with ≤ 5% contamination. In most samples, specialized microbial communities were established, while only a few taxa were widespread among the different reactor systems. Metabolic reconstruction of the MAGs enabled the prediction of functional traits related to biomass degradation and methane production from waste biomass. An extensive evaluation of the replication index provided an estimation of the growth dynamics for microbes involved in different steps of the food chain.
The outcome of this study highlights a high flexibility of the biogas microbiome, allowing it to modify its composition and to adapt to the environmental conditions, including temperatures and a wide range of substrates. Our findings enhance our mechanistic understanding of the AD microbiome and substantially extend the existing repository of genomes. The established database represents a relevant resource for future studies related to this engineered ecosystem.
沼气反应器中的微生物对于有机物降解和甲烷生成至关重要。然而,仍需要进行全面的以基因组为中心的比较,包括每个样本的相关元数据,以识别全球分布的沼气群落成员并作为可靠的资源库。
在此,使用来自不同沼气反应器的134个公开可用的宏基因组来回收1635个宏基因组组装基因组(MAG),这些基因组代表不同的沼气细菌和古菌类群。所有基因组估计完整性>50%,近一半≥90%完整,污染率≤5%。在大多数样本中,建立了专门的微生物群落,而只有少数分类群在不同的反应器系统中广泛分布。对MAG的代谢重建能够预测与生物质降解和从废弃生物质中产生甲烷相关的功能特性。对复制指数的广泛评估提供了对参与食物链不同步骤的微生物生长动态的估计。
本研究结果突出了沼气微生物组的高度灵活性,使其能够改变其组成并适应环境条件,包括温度和广泛的底物。我们的发现增强了我们对厌氧消化微生物组的机理理解,并大幅扩展了现有的基因组资源库。所建立的数据库是未来与这个工程生态系统相关研究的重要资源。