Suppr超能文献

分析 COVID-19 的流行病学爆发:一种可视化探索性数据分析方法。

Analyzing the epidemiological outbreak of COVID-19: A visual exploratory data analysis approach.

机构信息

Department of Computer Science and Engineering, Dhaka International University (DIU), Dhaka, Bangladesh.

Department of Computer Science and Engineering, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, Bangladesh.

出版信息

J Med Virol. 2020 Jun;92(6):632-638. doi: 10.1002/jmv.25743. Epub 2020 Mar 11.

Abstract

There is an obvious concern globally regarding the fact about the emerging coronavirus 2019 novel coronavirus (2019-nCoV) as a worldwide public health threat. As the outbreak of COVID-19 causes by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) progresses within China and beyond, rapidly available epidemiological data are needed to guide strategies for situational awareness and intervention. The recent outbreak of pneumonia in Wuhan, China, caused by the SARS-CoV-2 emphasizes the importance of analyzing the epidemiological data of this novel virus and predicting their risks of infecting people all around the globe. In this study, we present an effort to compile and analyze epidemiological outbreak information on COVID-19 based on the several open datasets on 2019-nCoV provided by the Johns Hopkins University, World Health Organization, Chinese Center for Disease Control and Prevention, National Health Commission, and DXY. An exploratory data analysis with visualizations has been made to understand the number of different cases reported (confirmed, death, and recovered) in different provinces of China and outside of China. Overall, at the outset of an outbreak like this, it is highly important to readily provide information to begin the evaluation necessary to understand the risks and begin containment activities.

摘要

人们普遍关注的一个事实是,2019 年新型冠状病毒(2019-nCoV)是对全球公共卫生的威胁。随着由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)引起的 COVID-19 在中国境内外的爆发,需要快速获得流行病学数据,以指导对疫情的了解和干预策略。中国武汉最近发生的由 SARS-CoV-2 引起的肺炎疫情,凸显了分析这种新型病毒的流行病学数据并预测其在全球范围内感染人类的风险的重要性。在这项研究中,我们根据约翰霍普金斯大学、世界卫生组织、中国疾病预防控制中心、国家卫生健康委员会和丁香园提供的几个关于 2019-nCoV 的公开数据集,努力编译和分析了 COVID-19 的流行病学爆发信息。我们进行了探索性数据分析和可视化,以了解中国和中国境外不同省份报告的不同病例(确诊、死亡和康复)数量。总的来说,在这种疫情爆发的初期,迅速提供信息以开始必要的评估,了解风险并开始遏制活动非常重要。

相似文献

3
The Novel Coronavirus: A Bird's Eye View.新型冠状病毒:概览
Int J Occup Environ Med. 2020 Apr;11(2):65-71. doi: 10.15171/ijoem.2020.1921. Epub 2020 Feb 5.
5
The Coronavirus Pandemic: What Does the Evidence Show?新冠疫情:证据表明了什么?
J Nepal Health Res Counc. 2020 Apr 19;18(1):1-9. doi: 10.33314/jnhrc.v18i1.2596.
6
Imported COVID-19 cases pose new challenges for China.输入性新冠肺炎病例给中国带来了新的挑战。
J Infect. 2020 Jun;80(6):e43-e44. doi: 10.1016/j.jinf.2020.03.048. Epub 2020 Apr 10.
7
Mask crisis during the COVID-19 outbreak.口罩危机在新冠疫情爆发期间。
Eur Rev Med Pharmacol Sci. 2020 Mar;24(6):3397-3399. doi: 10.26355/eurrev_202003_20707.
9
2019 novel coronavirus (2019-nCoV) outbreak: A new challenge.2019 新型冠状病毒(2019-nCoV)爆发:新的挑战。
J Glob Antimicrob Resist. 2020 Jun;21:22-27. doi: 10.1016/j.jgar.2020.02.021. Epub 2020 Mar 7.

引用本文的文献

3
The child's experience of becoming ill with COVID-19.该儿童感染新冠病毒后的患病经历。
Rev Esc Enferm USP. 2024 Feb 2;57:e20230165. doi: 10.1590/1980-220X-REEUSP-2023-0165en. eCollection 2024.
4
COVID-19 Patient Count Prediction Using LSTM.使用长短期记忆网络(LSTM)预测新冠病毒疾病(COVID-19)患者数量
IEEE Trans Comput Soc Syst. 2021 Feb 19;8(4):974-981. doi: 10.1109/TCSS.2021.3056769. eCollection 2021 Aug.

本文引用的文献

2
A Novel Coronavirus from Patients with Pneumonia in China, 2019.2019 年中国肺炎患者中的一种新型冠状病毒。
N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验