Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, Fujian, China.
Department of Neurology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China.
Hum Brain Mapp. 2020 Jun 15;41(9):2406-2430. doi: 10.1002/hbm.24954. Epub 2020 Mar 4.
Although substantial progress has been made in the identification of genetic substrates underlying physiology, neuropsychology, and brain organization, the genotype-phenotype associations remain largely unknown in the context of high-altitude (HA) adaptation. Here, we related HA adaptive genetic variants in three gene loci (EGLN1, EPAS1, and PPARA) to interindividual variance in a set of physiological characteristics, neuropsychological tests, and topological attributes of large-scale structural and functional brain networks in 135 indigenous Tibetan highlanders. Analyses of individual HA adaptive single-nucleotide polymorphisms (SNPs) revealed that specific SNPs selectively modulated physiological characteristics (erythrocyte level, ratio between forced expiratory volume in the first second to forced vital capacity, arterial oxygen saturation, and heart rate) and structural network centrality (the left anterior orbital gyrus) with no effects on neuropsychology or functional brain networks. Further analyses of genetic adaptive scores, which summarized the overall degree of genetic adaptation to HA, revealed significant correlations only with structural brain networks with respect to local interconnectivity of the whole networks, intermodule communication between the right frontal and parietal module and the left occipital module, nodal centrality in several frontal regions, and connectivity strength of a subnetwork predominantly involving in intramodule edges in the right temporal and occipital module. Moreover, the associations were dependent on gene loci, weight types, or topological scales. Together, these findings shed new light on genotype-phenotype interactions under HA hypoxia and have important implications for developing new strategies to optimize organism and tissue responses to chronic hypoxia induced by extreme environments or diseases.
尽管在确定生理、神经心理学和大脑组织的遗传基础方面已经取得了实质性进展,但在高海拔(HA)适应的背景下,基因型-表型相关性在很大程度上仍然未知。在这里,我们将三个基因座(EGLN1、EPAS1 和 PPARA)中的 HA 适应性遗传变异与一组生理特征、神经心理学测试以及大规模结构和功能大脑网络的拓扑属性的个体间方差相关联,涉及 135 名藏族高原土著居民。对个体 HA 适应性单核苷酸多态性(SNP)的分析表明,特定 SNP 选择性地调节生理特征(红细胞水平、第一秒用力呼气量与用力肺活量之比、动脉血氧饱和度和心率)和结构网络中心性(左前眶额回),而对神经心理学或功能大脑网络没有影响。对综合了对 HA 遗传适应程度的遗传适应性评分的进一步分析表明,仅与结构大脑网络存在显著相关性,涉及整个网络的局部互连性、右额和顶模块与左枕模块之间的模块间通信、几个额叶区域的节点中心性以及主要涉及右侧颞叶和枕叶模块内模块边缘的子网连接强度。此外,这些关联取决于基因座、体重类型或拓扑尺度。总之,这些发现为 HA 低氧下的基因型-表型相互作用提供了新的线索,并为开发新策略以优化机体和组织对极端环境或疾病引起的慢性缺氧的反应具有重要意义。