Xiang YuChen, Foreman Matthew R, Török Peter
Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
School of Physical and Mathematical Sciences (SPMS), Nanyang Technological University, Singapore.
Biomed Opt Express. 2020 Jan 22;11(2):1020-1031. doi: 10.1364/BOE.380798. eCollection 2020 Feb 1.
Brillouin spectroscopy can suffer from low signal-to-noise ratios (SNRs). Such low SNRs can render common data analysis protocols unreliable, especially for SNRs below ∼10. In this work we exploit two denoising algorithms, namely maximum entropy reconstruction (MER) and wavelet analysis (WA), to improve the accuracy and precision in determination of Brillouin shifts and linewidth. Algorithm performance is quantified using Monte-Carlo simulations and benchmarked against the Cramér-Rao lower bound. Superior estimation results are demonstrated even at low SNRs (≥ 1). Denoising is furthermore applied to experimental Brillouin spectra of distilled water at room temperature, allowing the speed of sound in water to be extracted. Experimental and theoretical values were found to be consistent to within ±1% at unity SNR.
布里渊光谱可能存在低信噪比(SNR)的问题。如此低的信噪比会使常见的数据分析协议变得不可靠,尤其是对于低于约10的信噪比。在这项工作中,我们利用两种去噪算法,即最大熵重建(MER)和小波分析(WA),来提高布里渊频移和线宽测定的准确性和精度。使用蒙特卡罗模拟对算法性能进行量化,并与克拉美罗下界进行基准比较。即使在低信噪比(≥1)的情况下,也展示了卓越的估计结果。此外,去噪还应用于室温下蒸馏水的实验布里渊光谱,从而能够提取水中的声速。在单位信噪比下,实验值和理论值的一致性在±1%以内。