Suppr超能文献

预防医院再入院:医疗保健提供者对 EHR 30 天再入院风险预测之外的“可影响性”的看法。

Preventing Hospital Readmissions: Healthcare Providers' Perspectives on "Impactibility" Beyond EHR 30-Day Readmission Risk Prediction.

机构信息

Clalit Research Institute, Clalit Health Services, Tel-Aviv, Israel.

Department of Nursing, Faculty of Social Welfare and Health Sciences, University of Haifa, 199 Aba Hushi Ave., Mount Carmel, 3498838, Haifa, Israel.

出版信息

J Gen Intern Med. 2020 May;35(5):1484-1489. doi: 10.1007/s11606-020-05739-9. Epub 2020 Mar 5.

Abstract

BACKGROUND

Predictive models based on electronic health records (EHRs) are used to identify patients at high risk for 30-day hospital readmission. However, these models' ability to accurately detect who could benefit from inclusion in prevention interventions, also termed "perceived impactibility", has yet to be realized.

OBJECTIVE

We aimed to explore healthcare providers' perspectives of patient characteristics associated with decisions about which patients should be referred to readmission prevention programs (RPPs) beyond the EHR preadmission readmission detection model (PREADM).

DESIGN

This cross-sectional study employed a multi-source mixed-method design, combining EHR data with nurses' and physicians' self-reported surveys from 15 internal medicine units in three general hospitals in Israel between May 2016 and June 2017, using a mini-Delphi approach.

PARTICIPANTS

Nurses and physicians were asked to provide information about patients 65 years or older who were hospitalized at least one night.

MAIN MEASURES

We performed a decision-tree analysis to identify characteristics for consideration when deciding whether a patient should be included in an RPP.

KEY RESULTS

We collected 817 questionnaires on 435 patients. PREADM score and RPP inclusion were congruent in 65% of patients, whereas 19% had a high PREADM score but were not referred to an RPP, and 16% had a low-medium PREADM score but were referred to an RPP. The decision-tree analysis identified five patient characteristics that were statistically associated with RPP referral: high PREADM score, eligibility for a nursing home, having a condition not under control, need for social-services support, and need for special equipment at home.

CONCLUSIONS

Our study provides empirical evidence for the partial congruence between classifications of a high PREADM score and perceived impactibility. Findings emphasize the need for additional research to understand the extent to which combining EHR data with provider insights leads to better selection of patients for RPP inclusion.

摘要

背景

基于电子健康记录(EHR)的预测模型用于识别 30 天内住院再入院风险较高的患者。然而,这些模型准确识别谁可能受益于预防干预的能力,也称为“感知可影响性”,尚未实现。

目的

我们旨在探讨医疗保健提供者对患者特征的看法,这些特征与决定将哪些患者转介至再入院预防计划(RPP)有关,超出了电子健康记录入院前再入院检测模型(PREADM)。

设计

本横断面研究采用多源混合方法设计,结合 EHR 数据和以色列三家综合医院 15 个内科病房的护士和医生自我报告的调查,于 2016 年 5 月至 2017 年 6 月期间使用微型德尔菲法。

参与者

护士和医生被要求提供至少住院一晚的 65 岁及以上患者的信息。

主要措施

我们进行了决策树分析,以确定在决定患者是否应纳入 RPP 时需要考虑的特征。

主要结果

我们收集了 817 份关于 435 名患者的问卷。在 65%的患者中,PREADM 评分和 RPP 纳入是一致的,而 19%的患者 PREADM 评分高但未被转介至 RPP,16%的患者 PREADM 评分低-中但被转介至 RPP。决策树分析确定了与 RPP 转介相关的五个患者特征:高 PREADM 评分、有资格入住养老院、有未得到控制的疾病、需要社会服务支持和需要特殊的家庭设备。

结论

本研究为高 PREADM 评分分类与感知可影响性之间的部分一致性提供了经验证据。研究结果强调需要进一步研究,以了解结合 EHR 数据和提供者见解在多大程度上导致更好地选择患者纳入 RPP。

相似文献

1
Preventing Hospital Readmissions: Healthcare Providers' Perspectives on "Impactibility" Beyond EHR 30-Day Readmission Risk Prediction.
J Gen Intern Med. 2020 May;35(5):1484-1489. doi: 10.1007/s11606-020-05739-9. Epub 2020 Mar 5.
2
Identifying patients at highest-risk: the best timing to apply a readmission predictive model.
BMC Med Inform Decis Mak. 2019 Jun 26;19(1):118. doi: 10.1186/s12911-019-0836-6.
3
Predicting 30-day readmissions with preadmission electronic health record data.
Med Care. 2015 Mar;53(3):283-9. doi: 10.1097/MLR.0000000000000315.
4
The impact of EHR and HIE on reducing avoidable admissions: controlling main differential diagnoses.
BMC Med Inform Decis Mak. 2013 Apr 17;13:49. doi: 10.1186/1472-6947-13-49.
5
Identification of elderly patients at risk for 30-day readmission: Clinical insight beyond big data prediction.
J Nurs Manag. 2022 Nov;30(8):3743-3753. doi: 10.1111/jonm.13495. Epub 2021 Nov 7.
6
Physician EHR Adoption and Potentially Preventable Hospital Admissions among Medicare Beneficiaries: Panel Data Evidence, 2010-2013.
Health Serv Res. 2016 Dec;51(6):2056-2075. doi: 10.1111/1475-6773.12586. Epub 2016 Oct 21.
7
Usability problems do not heal by themselves: National survey on physicians' experiences with EHRs in Finland.
Int J Med Inform. 2017 Jan;97:266-281. doi: 10.1016/j.ijmedinf.2016.10.010. Epub 2016 Oct 17.
8
Man vs. Machine: Comparing Physician vs. Electronic Health Record-Based Model Predictions for 30-Day Hospital Readmissions.
J Gen Intern Med. 2021 Sep;36(9):2555-2562. doi: 10.1007/s11606-020-06355-3. Epub 2021 Jan 14.
9
Exploring physicians' decision-making in hospital readmission processes - a comparative case study.
BMC Health Serv Res. 2018 Sep 19;18(1):725. doi: 10.1186/s12913-018-3538-3.
10
Dental screening and referral of young children by pediatric primary care providers.
Pediatrics. 2004 Nov;114(5):e642-52. doi: 10.1542/peds.2004-1269.

引用本文的文献

3
Development and validation of 'Patient Optimizer' (POP) algorithms for predicting surgical risk with machine learning.
BMC Med Inform Decis Mak. 2024 Mar 11;24(1):70. doi: 10.1186/s12911-024-02463-w.
4
Implementation Experience with a 30-Day Hospital Readmission Risk Score in a Large, Integrated Health System: A Retrospective Study.
J Gen Intern Med. 2022 Sep;37(12):3054-3061. doi: 10.1007/s11606-021-07277-4. Epub 2022 Feb 7.
5
Bridging the impactibility gap in population health management: a systematic review.
BMJ Open. 2021 Dec 20;11(12):e052455. doi: 10.1136/bmjopen-2021-052455.
6
What Is the Return on Investment of Caring for Complex High-need, High-cost Patients?
J Gen Intern Med. 2021 Nov;36(11):3541-3544. doi: 10.1007/s11606-021-07110-y. Epub 2021 Sep 10.
7
LACE Score-Based Risk Management Tool for Long-Term Home Care Patients: A Proof-of-Concept Study in Taiwan.
Int J Environ Res Public Health. 2021 Jan 28;18(3):1135. doi: 10.3390/ijerph18031135.
8
Predicting preventable hospital readmissions with causal machine learning.
Health Serv Res. 2020 Dec;55(6):993-1002. doi: 10.1111/1475-6773.13586. Epub 2020 Oct 30.

本文引用的文献

1
Identifying patients at highest-risk: the best timing to apply a readmission predictive model.
BMC Med Inform Decis Mak. 2019 Jun 26;19(1):118. doi: 10.1186/s12911-019-0836-6.
2
Preventing hospital readmissions: the importance of considering 'impactibility,' not just predicted risk.
BMJ Qual Saf. 2017 Oct;26(10):782-785. doi: 10.1136/bmjqs-2017-006629. Epub 2017 Jun 14.
3
Components of Comprehensive and Effective Transitional Care.
J Am Geriatr Soc. 2017 Jun;65(6):1119-1125. doi: 10.1111/jgs.14782. Epub 2017 Apr 3.
6
Decision tree methods: applications for classification and prediction.
Shanghai Arch Psychiatry. 2015 Apr 25;27(2):130-5. doi: 10.11919/j.issn.1002-0829.215044.
7
Predicting 30-day readmissions with preadmission electronic health record data.
Med Care. 2015 Mar;53(3):283-9. doi: 10.1097/MLR.0000000000000315.
8
Preventing 30-day hospital readmissions: a systematic review and meta-analysis of randomized trials.
JAMA Intern Med. 2014 Jul;174(7):1095-107. doi: 10.1001/jamainternmed.2014.1608.
9
Reducing hospital readmission rates: current strategies and future directions.
Annu Rev Med. 2014;65:471-85. doi: 10.1146/annurev-med-022613-090415. Epub 2013 Oct 21.
10
Interventions for reducing readmissions - are we barking up the right tree?
Isr J Health Policy Res. 2013 Jan 23;2(1):2. doi: 10.1186/2045-4015-2-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验