Zhou Junze, Nomenyo Komla, Cesar Clotaire Chevalier, Lusson Alain, Schwartzberg Adam, Yen Chun-Chieh, Woon Wei-Yen, Lerondel Gilles
Lumière, Nanomatériaux, Nanotechnologies, CNRS ERL 7004, Institut Charles Delaunay, Université de Technologie de Troyes, 12 Rue Marie Curie, CS 42060, 10004, Troyes, Cedex, France.
Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA.
Sci Rep. 2020 Mar 6;10(1):4237. doi: 10.1038/s41598-020-61189-7.
Zinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate. In this work we present a new method, for which we coin term desulfurization, for creating green emitting ZnO with significantly enhanced quantum efficiency. Solution grown ZnO nanowires are partially converted to ZnS, then desulfurized back to ZnO, resulting in a highly controlled concentration of oxygen defects as determined by X-ray photoelectron spectroscopy and electron paramagnetic resonance. Using this controlled placement of oxygen vacancies we observe a greater than 40-fold enhancement of integrated emission intensity and explore the nature of this enhancement through low temperature photoluminescence experiments.
氧化锌(ZnO)是一种稳定的直接带隙半导体,在紫外光区域发光,具有众多技术应用。众所周知,通过引入缺陷,ZnO的发射可以转移到绿光区域以用于可见光应用。然而,通过这个过程产生一致且高效的绿色发射具有挑战性,特别是考虑到ZnO中绿色发射的化学或原子起源仍在争论中。在这项工作中,我们提出了一种新方法,我们将其命名为脱硫法,用于制备具有显著提高的量子效率的绿色发光ZnO。溶液生长的ZnO纳米线部分转化为ZnS,然后再脱硫变回ZnO,通过X射线光电子能谱和电子顺磁共振确定,这导致了氧缺陷浓度得到高度控制。利用这种对氧空位的可控设置,我们观察到积分发射强度提高了40倍以上,并通过低温光致发光实验探索了这种增强的本质。