Suppr超能文献

通过脱硫工艺增强氧化锌纳米线的巨缺陷发射

Giant defect emission enhancement from ZnO nanowires through desulfurization process.

作者信息

Zhou Junze, Nomenyo Komla, Cesar Clotaire Chevalier, Lusson Alain, Schwartzberg Adam, Yen Chun-Chieh, Woon Wei-Yen, Lerondel Gilles

机构信息

Lumière, Nanomatériaux, Nanotechnologies, CNRS ERL 7004, Institut Charles Delaunay, Université de Technologie de Troyes, 12 Rue Marie Curie, CS 42060, 10004, Troyes, Cedex, France.

Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA.

出版信息

Sci Rep. 2020 Mar 6;10(1):4237. doi: 10.1038/s41598-020-61189-7.

Abstract

Zinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate. In this work we present a new method, for which we coin term desulfurization, for creating green emitting ZnO with significantly enhanced quantum efficiency. Solution grown ZnO nanowires are partially converted to ZnS, then desulfurized back to ZnO, resulting in a highly controlled concentration of oxygen defects as determined by X-ray photoelectron spectroscopy and electron paramagnetic resonance. Using this controlled placement of oxygen vacancies we observe a greater than 40-fold enhancement of integrated emission intensity and explore the nature of this enhancement through low temperature photoluminescence experiments.

摘要

氧化锌(ZnO)是一种稳定的直接带隙半导体,在紫外光区域发光,具有众多技术应用。众所周知,通过引入缺陷,ZnO的发射可以转移到绿光区域以用于可见光应用。然而,通过这个过程产生一致且高效的绿色发射具有挑战性,特别是考虑到ZnO中绿色发射的化学或原子起源仍在争论中。在这项工作中,我们提出了一种新方法,我们将其命名为脱硫法,用于制备具有显著提高的量子效率的绿色发光ZnO。溶液生长的ZnO纳米线部分转化为ZnS,然后再脱硫变回ZnO,通过X射线光电子能谱和电子顺磁共振确定,这导致了氧缺陷浓度得到高度控制。利用这种对氧空位的可控设置,我们观察到积分发射强度提高了40倍以上,并通过低温光致发光实验探索了这种增强的本质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4dd/7060210/71fce0dff252/41598_2020_61189_Fig1_HTML.jpg

相似文献

1
Giant defect emission enhancement from ZnO nanowires through desulfurization process.
Sci Rep. 2020 Mar 6;10(1):4237. doi: 10.1038/s41598-020-61189-7.
2
Orange/Red Photoluminescence Enhancement Upon SF Plasma Treatment of Vertically Aligned ZnO Nanorods.
Nanomaterials (Basel). 2019 May 23;9(5):794. doi: 10.3390/nano9050794.
4
Influence of Exciton Localization on the Emission and Ultraviolet Photoresponse of ZnO/ZnS Core-Shell Nanowires.
ACS Appl Mater Interfaces. 2015 May 20;7(19):10331-6. doi: 10.1021/acsami.5b01100. Epub 2015 May 7.
5
Origin of luminescence from ZnO/CdS core/shell nanowire arrays.
Nanoscale. 2014 Aug 21;6(16):9783-90. doi: 10.1039/c4nr02231a.
6
Field emission and optical properties of ZnO nanowires grown directly on conducting brass substrates.
J Nanosci Nanotechnol. 2009 Jun;9(6):3848-52. doi: 10.1166/jnn.2009.ns78.
9
Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.
Nanoscale. 2013 Oct 7;5(19):9238-46. doi: 10.1039/c3nr02678g. Epub 2013 Aug 13.

引用本文的文献

3
Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue.
RSC Adv. 2022 Mar 10;12(13):7850-7863. doi: 10.1039/d2ra00620k. eCollection 2022 Mar 8.
4
Localized Energy Band Bending in ZnO Nanorods Decorated with Au Nanoparticles.
Nanomaterials (Basel). 2021 Oct 14;11(10):2718. doi: 10.3390/nano11102718.

本文引用的文献

1
Prenatal detection of rubella-specific IgM in fetal sera.
Prenat Diagn. 1985 Jan-Feb;5(1):21-6. doi: 10.1002/pd.1970050105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验