Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany.
Phys Rev E. 2020 Feb;101(2-1):022414. doi: 10.1103/PhysRevE.101.022414.
The formation of protein patterns inside cells is generically described by reaction-diffusion models. The study of such systems goes back to Turing, who showed how patterns can emerge from a homogenous steady state when two reactive components have different diffusivities (e.g., membrane-bound and cytosolic states). However, in nature, systems typically develop in a heterogeneous environment, where upstream protein patterns affect the formation of protein patterns downstream. Examples for this are the polarization of Cdc42 adjacent to the previous bud site in budding yeast and the formation of an actin-recruiter ring that forms around a PIP3 domain in macropinocytosis. This suggests that previously established protein patterns can serve as a template for downstream proteins and that these downstream proteins can "sense" the edge of the template. A mechanism for how this edge sensing may work remains elusive. Here we demonstrate and analyze a generic and robust edge-sensing mechanism, based on a two-component mass-conserving reaction-diffusion (McRD) model. Our analysis is rooted in a recently developed theoretical framework for McRD systems, termed local equilibria theory. We extend this framework to capture the spatially heterogeneous reaction kinetics due to the template. This enables us to graphically construct the stationary patterns in the phase space of the reaction kinetics. Furthermore, we show that the protein template can trigger a regional mass-redistribution instability near the template edge, leading to the accumulation of protein mass, which eventually results in a stationary peak at the template edge. We show that simple geometric criteria on the reactive nullcline's shape predict when this edge-sensing mechanism is operational. Thus, our results provide guidance for future studies of biological systems and for the design of synthetic pattern forming systems.
细胞内蛋白质模式的形成通常由反应-扩散模型来描述。这类系统的研究可以追溯到图灵(Turing),他证明了当两个反应成分具有不同扩散率(例如,膜结合态和胞质态)时,模式可以从均匀的稳态中出现。然而,在自然界中,系统通常在异质环境中发育,其中上游蛋白质模式会影响下游蛋白质模式的形成。例如,在出芽酵母中,Cdc42 在之前芽点的旁边极化,以及在大胞饮作用中,形成围绕 PIP3 域的肌动蛋白招募环。这表明先前建立的蛋白质模式可以作为下游蛋白质的模板,并且这些下游蛋白质可以“感知”模板的边缘。这种边缘感应的机制仍然难以捉摸。在这里,我们展示并分析了一种基于双组份质量守恒反应-扩散(McRD)模型的通用且稳健的边缘感应机制。我们的分析基于最近为 McRD 系统开发的理论框架,称为局部平衡理论。我们扩展了这个框架,以捕捉由于模板而导致的空间异质反应动力学。这使我们能够在反应动力学的相空间中图形化地构建稳态模式。此外,我们表明,蛋白质模板可以在模板边缘附近触发区域性质量再分布不稳定性,导致蛋白质质量的积累,最终导致在模板边缘处出现稳态峰值。我们表明,关于反应零曲线形状的简单几何标准可以预测这种边缘感应机制何时起作用。因此,我们的结果为未来的生物系统研究和合成模式形成系统的设计提供了指导。