Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.
Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.
Lancet Infect Dis. 2020 May;20(5):553-558. doi: 10.1016/S1473-3099(20)30144-4. Epub 2020 Mar 11.
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced.
We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020.
We estimated that the median daily reproduction number (R) in Wuhan declined from 2·35 (95% CI 1·15-4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41-2·39) 1 week after. Based on our estimates of R, assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population.
Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually.
Wellcome Trust, Health Data Research UK, Bill & Melinda Gates Foundation, and National Institute for Health Research.
截至 2020 年 3 月 5 日,严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)爆发已导致 95333 例确诊病例。了解感染的早期传播动态并评估控制措施的有效性对于评估新地区持续传播的潜力至关重要。我们结合了 SARS-CoV-2 严重传播的数学模型和来自武汉内外的四个数据集,估计了 2019 年 12 月至 2020 年 2 月期间武汉的传播情况。我们使用这些估计来评估如果在武汉以外地区引入病例,持续的人际传播是否可能发生。
我们结合了一个随机传播模型和武汉的 2019 年冠状病毒病(COVID-19)病例和起源于武汉的国际病例的数据,以估计 2020 年 1 月和 2 月期间传播情况的变化。基于这些估计,我们计算了新引入的病例在其他地区引发疫情的可能性。为了估计武汉早期传播动态,我们拟合了一个随机传播动态模型,以拟合武汉和从武汉出口的国际病例的多个公开数据集。我们拟合的四个数据集为:截至 2020 年 1 月 26 日,按发病日期列出的每天新出口的国际病例(或没有)数量;2019 年 12 月 1 日至 2020 年 1 月 1 日期间,无市场接触的武汉新发病例,按发病日期列出;2019 年 12 月 29 日至 2020 年 1 月 23 日期间,中国每日新增病例,按发病日期列出;以及 2020 年 1 月 29 日至 2 月 4 日期间,撤离航班上受感染乘客的比例。我们还使用另外两个数据集与模型输出进行比较:截至 2020 年 2 月 10 日,与武汉连通性较高的 20 个高风险国家/地区,按确诊日期列出的每天从武汉出口的新病例(或没有)数量;以及 2020 年 1 月 16 日至 2 月 11 日期间,武汉新确诊病例的数据。
我们估计,在 2020 年 1 月 23 日旅行限制实施前一周,武汉的中位日繁殖数(R)从 2.35(95%CI 1.15-4.77)下降到实施旅行限制后的 1.05(0.41-2.39)。根据我们对 R 的估计,假设 SARS 样变化,我们计算出,在与 1 月初武汉具有相似传播潜力的地区,一旦有至少四个独立引入的病例,感染在该人群中建立的可能性超过 50%。
我们的结果表明,2020 年 1 月下旬,COVID-19 传播可能在武汉下降,这与旅行控制措施的实施相吻合。随着更多的病例到达与武汉具有相似传播潜力的国际地区,在这些控制措施之前,许多传播链可能最初无法建立,但最终可能导致新的爆发。
威康信托基金会、英国健康数据研究署、比尔和梅林达盖茨基金会以及英国国家健康研究所。