Chouchane Mehdi, Primo Emiliano N, Franco Alejandro A
Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15 rue Baudelocque, 80039 Amiens Cedex, France.
Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15 rue Baudelocque, 80039 Amiens Cedex, France.
J Phys Chem Lett. 2020 Apr 2;11(7):2775-2780. doi: 10.1021/acs.jpclett.0c00517. Epub 2020 Mar 24.
During the screening of active materials (AMs) for lithium-ion batteries, the solid-state lithium diffusion coefficient () is one of the most relevant descriptors used to evaluate the relevance of an AM candidate. However, for a given compound, the values reported in literature span over several orders of magnitude. Therefore, through the case study of LiNiMnCoO cathode AM, new physical insights are provided to explain the dispersion of values obtained through galvanostatic intermittent titration technique (GITT) . For the first time, a 3D electrochemical model (accounting for the carbon-binder domain) fed with experimental inputs is capable of highlighting the limitations of the most widely used equation for deriving . Through our model, we show that these limitations arise from the influence of the carbon-binder domain location throughout the electrode and the non-homogeneous AM phasedistribution and particle size.
在筛选锂离子电池活性材料(AM)的过程中,固态锂扩散系数()是用于评估AM候选材料相关性的最相关描述符之一。然而,对于给定的化合物,文献中报道的 值跨越了几个数量级。因此,通过对LiNiMnCoO正极活性材料的案例研究,提供了新的物理见解来解释通过恒电流间歇滴定技术(GITT)获得的 值的分散性。首次使用基于实验输入的三维电化学模型(考虑碳粘结剂区域)能够突出用于推导 的最广泛使用的方程的局限性。通过我们的模型,我们表明这些局限性源于整个电极中碳粘结剂区域位置的影响以及活性材料相分布和粒径的不均匀性。